Главная страница >  Хронология 

ЛИТЕРАТУРА И ИСТОЧНИКИ

1. Авдуевский В.С., Галицейский Б.М., Глебов Г.А. и др. Основы теплопередачи в авиационной и ракетно-космической технике. М.: Машиностроение, 1975.

ЛИТЕРАТУРА И ИСТОЧНИКИ

Алексимов А.А. 4 октября 1957 г. Спутник и США. М.: Молодая гвардия, 1972.

Алексеев Г.Н. Общая теплотехника. М.: Высш. шк., 1980.

Архив ГДЛ-ОКБ, оп. 2, ед. хр. 33.

Арх. АН СССР, р. 4, оп. 14, ед. хр. 125–135.

7. Бубнов И.Н. Роберт Годдард. М.: Наука, 1978.

6. Бубнов И.Н. Краткий очерк развития космических ракет-носителей США. — В кн.: Из истории авиации и космонавтики. М., 1964, вып. 2, с. 3—55.

9. Бычков В.Н. 27 июля — 30 лет со дня начала заводских стендовых испытаний первой в мире камеры ЖРД со связанными оболочками У-1250 (1946 г.). — В кн.: Из истории авиации и космонавтики. М., 1976, вып. 29, с. 94–98.

Бургесс Э. Управляемое реактивное оружие. М.; Изд-во иностр. лит., 1958.

1 Валье М. Полет в мировое пространство. М.; Л., 1936.

10. Бычков В.Н., Назаров Г.А., Прищепа В.И. Космические жидкостно-ракетные двигатели. М.: Знание, 1976.

13. Глушко В.П. О горении готовых жидких топливных смесей в полузамкнутом объеме (1931 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 217–227.

12. Васильев А.П., Кудрявцев В.М. и др. Основы теории и расчета жидкостных ракетных двигателей. М.: Высш. шк., 1975.

15. Глушко В.П. Отчет по опытам с реактивными моторами, проведенными по 1-е сентября 1932 г. (1932 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 228–252.

14. Глушко В.П. Отчет по объекту 202 за 1936 год (1936 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 324–337.

17. Глушко В.П. Теплопотери и охлаждение ракетного мотора (1931 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 208–212.

16. Глушко В.П. Теплоизоляция для камер сгорания реактивных двигателей (1930 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 163–169.

19. Глушко В.П. Протокол № 3 испытания двигателя 12/а 29 мая 1935 г. (1936 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 33, л. 281–283.

18. Глушко В.П. Отчет по разработке азотного ракетного двигателя с тягой 300 кг (объект 12а). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 38.

21. Глушко В.П. Р[акетный] М[отор] (порядок проектирования и осуществления). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 189.

20. Глушко В.П. Ракетные двигатели ГДЛ-ОКБ. М.: АПН, 1975.

23. Глушко В.П. Расчет реактивной установки и мотора для торпеды-глиссера (1933 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 266–280.

2 Глушко В.П., Лангемак Г.Э. Ракеты: Их устройство и применение. М.; Л.: ОНТИ, 1935.

25. Гофмэн. Большие ракетные двигатели для космических ракет и снарядов. — Вопр. ракетной техники, 1962, № 2, с. 3–24.

24. Годдард Р. Медленное движение с помощью взрывчатых веществ, из «зеленой записной книжки» (Вустер, 24 января — 2 февраля 1909 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1977, с. 33–37.

27. Гэвин Дж. Самое знаменательное событие нашего времени. — В кн.: Ракеты и противоракетная оборона. М.: Воениздат, 1962, с. 91–102.

2 Гребер Г. Введение в теорию теплопередачи. М.; Л., 1936.

29. Гухман А.А., Илюхин Н.В. Основы учения о теплообмене при течении газа с большой скоростью. М.: Машгиз, 1951.

28. Гэтленд К.У. Развитие управляемых снарядов. М.: Изд-во иностр. лит., 1956.

31. Дополнение к отчету о разработке двигателя 02 за 1935 г.— Арх. АН СССР, р. 4, оп. 14, ед. хр. 27.

30. Дело по разработке мотора инженера Шатилова. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 7.

3 Жидкостная ракета. Двигатель ОР- — Арх. АН СССР, ф. 573, оп. 1, Д. 43.

32. Душкин Л.С. Предварительный отчет о результатах лабораторных исследований основных характеристик ракетного двигателя, использующего в качестве компонентов топлива азотную кислоту (98%) и керосин (1938 г.).— Арх. АН СССР, р. 4, оп. 14, ед. хр. 26.

3 Исаев A.M. Первые шаги к космическим двигателям. М.: Машиностроение, 1979.

34. Иевлев В.М. Некоторые вопросы гидродинамической теории теплообмена при течении несжимаемой жидкости. — ДАН СССР, 1952, 86, № 6, с. 1077–1080.

3 Кончим О.П. Ниобий и тантал. Область освоенного и возможного применения. М.: Изд-во иностр. лит., 1959.

3 Кедров Б.М. О повторяемости в процессе развития. М.: Политиздат, 1961.

3 Кондратюк Ю.В. Тем, кто будет читать, чтобы строить. М.: Наука, 1964, с. 501 -536.

3 Комментарии. — В кн.: Пионеры ракетной техники. М.: Наука, 1964, с. 762–793.

41. Королев С.П. Тезисы доклада по объекту 318 «Научно-исследовательские работы по ракетному самолету» (1938 г.). М.: Наука, 1964, с. 508–510.

4 Кондратюк Ю.В. Завоевание межпланетных пространств. М.: Наука, 1964, с. 360–387.

43. Краткое техническое описание реактивного двигателя Д-1-А-110 Москва; Свердловск, 1941—1942 гг. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 316.

42. Краткое описание работы «Ракетный двигатель на жидком топливе», законченной выполнением в 1941 г. (1942 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 315.

45. Кружилин Г.Н. Исследование теплового пограничного слоя.— ЖТФ, 1936, т. 6, вып. 3, с. 561–570.

44. Крокко Л. Ранние исследования в области ракет и ракетного топлива в Италии. — В кн.: Из истории астронавтики и ракетной техники. М.: Наука, 1970, с. 34–55.

47. Лутц О. Исторический обзор разработки в Германии топлива и материалов для ракетных двигателей. — В кн.: Из истории астронавтики и ракетной техники. М.: Наука, 1970, с. 56–68.

4 Лей В. Ракеты и полеты в космос. М.: Воениздат, 1961.

49. Малина Р.Дж. О научно-исследовательской работе группы GALCIT в 1936–1938 гг. — В кн.: Из истории астронавтики и ракетной техники. М.: Наука, 1970, с. 69–84.

48. Майширо, Постер, Френч. Разработка двигательной установки для космического аппарата «Маринер 71». — Вопр. ракетной техники 1971, № 9, с. 28–44.

5 Мелькумов Т.М., Мелик-Пашаев Н.И. и др. Ракетные двигатели. М.: Высш. шк., 1968.

50. 1849 г. мая 3 — Из труда И.И. Третеского «О способах управлять аэростатами». — В кн.: Воздухоплавание и авиация в России до 1907 г. М.: Изд-во АН СССР, 1956, с. 65–75.

5 Мошкин Е.К. Развитие отечественного ракетного двигателестроения. М.: Машиностроение, 1973.

52. Михайлов B.C. О работах Н.А. Телешова — автора проекта реактивного самолета (1867 г.). — В кн.: Из истории авиации и космонавтики. М., 1978, вып. 32, с. 94–106.

5 Неждановский С.С. Рукопись. — Арх. Науч.-мемор. музея Н.Е. Жуковского, инв. № 2990/2.

5 Неждановский С.С. Рукопись. — Арх. Науч.-мемор. музея Н.Е. Жуковского, инв. №2990/1.

57. Ньютон И. Математические начала натуральной философии. — В кн.: Собрание трудов академика А.Н. Крылова. М.: Изд-во АН СССР, 1936, т. 7.

56. Некоторые конструкции, разработанные под руководством В.П. Глушко, С.П. Королева и М.К. Тихонравова. — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 709–750.

5 «Огнеупоры»: Отчеты. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 136.

58. Оберт Г. Ракета в космическое пространство. — В кн.: Пионеры ракетной техники. М.: Наука, 1977, с. 424— 510.

61. Отчет о работе над кислородным двигателем объекта 12к (1935 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 311.

6 Опытный ракетный двигатель (1939 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 31.

63. Отчет о результатах научно-исследовательской работы по спиртокислородному ракетному двигателю (1939 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 35.

62. Отчет о работе по двигателю объекта 208 (технические требования, основные характеристики, описание), 1936 г. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 24.

6 Отчеты по испытаниям 318–1 и 218–1.-Арх. АН СССР, р. 4, оп. 14, ед. хр. 104.

64. Отчет о результатах отработки опытного образца ракетного двигателя на азотной кислоте и керосине с тягой 300 кг (Объект 601) (1939 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 28.

67. Отчет по теме «Теплоотдача в соплах ракет» (1936г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 23.

6 Отчет по итогам работы по ракетным двигателям (1940 г.). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 20.

69. Протоколы испытаний двигателя для ракеты 1 Акт о пуске ракеты 25/XI 1933г. (1933). — Арх. АН СССР, р. 4, оп. 14, ед. хр. 49.

68. Прищепа В.И. Из истории создания первых космических ракетных двигателей (1947–1957). — В кн.: Исследования по истории и теории развития авиационной и ракетно-космической науки и техники. М.: Наука, 1981, с. 123–137.

71. Протоколы испытаний отдельных узлов по ракете 07, 1933 г. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 51.

7 Протоколы испытаний двигателя 12к. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 5.

7 Протоколы испытаний пуска ракеты 05 и огневых испытаний мотора 0–1 Тепловой расчет мотора 0–10, 1934 г. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 3.

72. Протоколы испытаний по двигателю ОР-2, 1932–1934 г.— Арх. АН СССР, р. 4, оп. 14, ед. хр. 2.

75. Салахутдинов Г.М. К вопросу о дате высказывания Ф.А. Цандером идеи о сжигании металлического горючего. — В кн.: Идеи Ф.А. Цандера и развитие ракетно-космической науки и техники. М.: Наука, 1982.

7 Расчеты двигателя 205, где Р-100кг, 1935–1936 гг.-Арх. АН СССР, р. 4, оп. 14, ед. хр. 6.

77. Спиртокислородный ракетный двигатель с тягой 150 кг. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 21.

7 Саттон Г.П. Ракетные двигатели. М.: Изд-во иностр. лит., 1952.

7 Технический отчет по работам КБ-7 за 1938 г. — Арх. АН СССР, р. 4, оп. 14, ед. хр. 153.

7 Техника в ее историческом развитии. М.: Наука, 1979.

8 Тру экс Р. К. Разработка ракетных двигателей в Аннаполисе. — В кн.: Из истории астронавтики и ракетной техники. М.: Наука, 1970, с. 162–168.

8 Тихонравов М.К. Опытные характеристики ракетного двигателя (1938 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1972, с. 652—693.

8 Цандер Ф.А. Тепловой расчет ракетного двигателя на жидком топливе. — В кн.: Ракетная техника. М., 1936, вып. 1.

8 Цандер Ф.А. Космические (эфирные) корабли, которые обеспечат сообщение между звездами. Движение в мировом пространстве. — В кн.: Из истории авиации и космонавтики. М., 1971, с. 3–36.

85. Циолковский К.Э. Исследование мировых пространств реактивными приборами (1930 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1964, с. 23–53.

84. Цандер Ф.А. Тепловой расчет ракетного двигателя на жидком топливе. — В кн.: Ракетная техника. М., 1937, вып. 138

87. Циолковский К.Э. Исследование мировых пространств реактивными приборами: (Доп. к I и II части труда того же названия (1914 г.)). — В кн.: Пионеры ракетной техники. М.: Наука, 1964, с. 96–107.

86. Циолковский К.Э. Исследование мировых пространств реактивными приборами (1911–1912 гг.). — В кн.: Пионеры ракетной техники. М.: Наука, 1964, с. 54–95.

89. Циолковский К.Э. Космический корабль (1924 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1964, с. 108–127.

88. Циолковский К.Э. Исследование мировых пространств реактивными приборами: (Переизд. работ 1903 и 1911 гг. с некоторыми изменениями и дополнениями) (1926 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1964, с. 130–214.

91. Шассэн Л. Война в космосе. — В кн.: Ракеты и противоракетная оборона. М.: Воениздат,-1962, с. 153— 171.

90. Циолковский К.Э. Космические ракетные поезда (1929 г.). — В кн.: Пионеры ракетной техники. М.: Наука, 1964,с.215–242.

93. A scala of the degrees of heat. — In: The Philosophical Transactions (From the Year 1700 to the Year 1720). L, 1731, vol. IV, pt II, p. 1–4.

92. Эккерт, Ливигуд. Сравнение эффективности конвективного, пористого и пленочного методов охлаждения при использовании воздуха в качестве охлаждающей среды. — Вопр. ракетной техники, 1956, № 3, с. 42–69.

9 Adams M. Present advances in Ablative. — ARS Journal, 1959, 29, N 9, p. 625–632.

94. Abramson A.E. Comment on «Approximate theory of porous, sweat, or film cooling with reactive fluids» by L. Crocco. — J. Amer. Rocket Soc., 1953, 23, N 2, p. 97.

9 Pat. 3534555 (US). Laminar flow enhancement / R.A. Agvazian. Cl. 6.03.68; Publ. 20.10.70.

9 Aero engines. — Flight, 1959, 75, N 2617.

99. Aldrich D.E., Sanchini D.J. F-1 rocket enaine development to provide 150000 Ibs of thrust.-Missiles and Space, 1962, Oct., p. 26–28.

98. Aldrich D.E., Sanchini D.J. (Rocket-dyne). F-1 rocket engine development. — Canad. Aeronaut, and Space J., 1962, 8, N4, p. 79–85.

101. Anderton D.A. First details revealed on Centaur RL 1 — Aviat. Week and Space Technol., 1962, 76, N 14, p. 52–59.

100. Alexander G.P. P and W studies small, high-thrust engines. — Aviat. Week and Space Technol., 1963, 79, N 13, p. 73–75, 77.

103. Apollo return engine completed. — Interavia Air Lett., 1964, N 5489, p. 7.

102. Anderton D.A. J-2, M-1 engine design details reported. — Aviat. Week and Space Technol., 1963, 78, N 18, p. 56–59.

10 Armstrong Siddeley Screamer. – Flight Intern., 1956, 70, N 2479, p. 160–164.

10 Apollo service module engine. — Aviat. Week and Space Technol., 1963, 78, N5, p. 31.

107. Back L.H.. MassierP.F., Cuffel R.F. Flow and heat — transfer measurements in subsonic air flow through a contraction section. — Intern. J. Heat and Mass Transfer, 1969, 12, N 1, p. 1–13.

10 Aviation stock in demand. — Interavia Air Lett., 1958, N 4054, p. 1.

109. Back L.H., MassierP.F., Cuffel R.F. Some observation on reduction of turbulent boundary-layer heat transfer in nozzle. — AIAA Journal, 1966, 4, N 12, p. 2226–2229.

108. Back L.H.. Massier P.P., Cuffel R.F. Flow phenomena and convective heat transfer in a conical supersonic nozzle. — J. Spacecraft and Rocket, 1967, 4, N 8, p. 1040–1047.

111. Back L.H., Cuffel R.F., Massier P.F. Influence of contraction section shape and inlet flow direction on supersonic nozzle flow and performance. — AIAA Journal, 1972, 10, N 4, p. 420–427.

110. Back L.H., MassierP.F., Cier H.L. Convective heat transfer in a convergent-divergent nozzle. — Intern. J. Heat and Mass Transfer, 1964, 7, N 5, p. 549–667.

113. Bartlett E.P. Thermal protection of rocket-motor structures. — Aerospace Eng., 1963, 22, N 1, p. 86–99.

112. Low mixture ratio fluorine/hydrogen propulsion system investigation. — AIAA Bull., 1965, 2, N 5, p. 211.

115. Bartz D.R. Factors which influence the suitability of liquid propellents as rocket motor regenerative coolants.—Jet Propuls., 1958, 28, N 1, p. 46–53.

114. Barfz D.R. An approximate solution of compressible turbulent boundary-layer development and convective heat-transfer in convergent-divergent nozzle. — Trans. ASME, 1955,77, N 8, p. 1235–1245.

117. Bartz D.R. Survey of the relationship between theory and experiment for convective heat transfer from rocket combustion gases. — Adv. Heat Transfer, 1968, 2, p. 291–382.

116. Bartz D.R. A simple equation for rapid estimation of rocket nozzle convective heat transfer coefficients. — Jet Propuls., 1957, 27, N2, p. 49–51.

119. Beighley C.M., Dean L.E. Study of heat transfer to JP-4 jet fuel. — Jet Propuls., 1954, 24, N 3, p. 180–186.

118. Bartz D.R. Survey of the relationship between theory and experimental for convective heat transfer from rocket combustion gases. — In: Advances in tactical rocket propulsion. NATO, 1968, p. 291 — 381.

121. Berman K., Andrusiak S.J. Barrier film cooling study. — J. Spacecraft and Rockets, 1972, 9, N3, p. 152–157.

120. Berman K., Albanese Т., Blessing A., Roth N. Additives for heat-transfer reduction in the propellent combinations N ,O4— MMHand N,O,-A-5 — J. Spacecraft and Rockets, 1973, 10, N 8, p. 493–495.

12 BraunW.von, Ordway F.J. History of rocketry space travel. L., 1969.

122. Boden B.H. Heat transfer in rocket motors and the application of film and sweat cooling. — Trans. ASME, 1951, 73, N4, p. 385–391.

12 BrugelW. Manner der Rokete. Leipzig, 1933.

12 Brennan W.J. Liquid rockets. — Space/Aeronaut., 1965, 44, N 3, p. 51–54, 61.

127. Bur/age H.,jun., Gin W., Rie tiling R.W. Unmanned planetary spacecraft chemical rocket propulsion. — J. Spacecraft and Rockets, 1972, 9, N10, p. 729–737.

126. Pat. 3782116 (US). Film cooling and acoustic damping for internal combustion engine / N.L. Burge, N.C. Rodewald. Cl. 10.03.71; Publ. 1.01.74.

129. Cebeci T. Calculation of compressible turbulent boundary layers with heat and mass transfer. '-AIAA Journal, 1971, 9, N 6, p. 1091–1097.

128. Castenholz R.D. Rocketdyne's space Shuttle main engine. — AIAA Pap. 1971, N 71–659.

131. Glasfaser and Kunststoff — Kunststoffe, 1955, Bd. 45, N 10, S. 495–499.

130. Clarke J.H., Menkes H.R., Lib-by P.A. A provisional analysis of turbulent boundary layers with injection. — J. Aeronaut. Sci., 1955, 22, p. 255–260.

133. Colburn A.P. A method of correlating forced convection heat transfer data and a comparison with fluid fraction. — Trans. Amer. Inst. Chem. Eng., 1933, 29, N 29, p. 174–210.

13 Glass-plastic. — Chem. Industr. Week, 1951, 68, N8, p. 10.

135. Cook R. Т., Coffey G.A. Space Shuttle orbiter engine main combustionchamber cooling and life. — AIAA Pap., 1973, N 1310.

134. Cook ft. T. Advanced cooling techniques for high pressure hydrocarbon fueled rocket engines. — In: AIAA/SAE, ASME 16th joint propuls. conf. Hartford (Conn.), June 30-July 2, 198 Hartford (Conn.), 1980.

137. Cordon ft. Heat-transfer problems in liquid-propellant rocket motors. — ARS Journal, 1950, N81, p. 65–77.

136. CopeW.F. The friction and heat transmission coefficients of rough pipes. — Proc. Inst. Mech. Eng., 1945, 145, p. 99–105.

139. GreenfieldS. Determination of rocket-motor heat-transfer coefficient by the transient method. — J. Aeronaut. Sci., 1951. 18, N 8, p. 512–518.

138. Coulbert G.D. Developments in radiation cooling thrust chamber. — Chem. Eng. Progr. Symp.Ser., 1964, 60, N 52, p. 105–115.

195 22, N 12, p. 331–338.

140. Crocco L. An approximate theory of porous, sweat, or film cooling with reactive fluids. — J. Amer. Rocket Soc.

142. GrootenhuisP. Flow of gases through porous metal compacts. — Engineering, 1949, 167, p. 291–301.

141. Grocco L. Transformation of the compressible turbulent boundary layer with heat exchange. — AIAA Journal, 1963, N 12, p. 13–14.

144. Gross R.J., Thomas L.C. Significance of the pressure gradient on fully developed turbulent flow in pipe. — J. Heat Transfer, 1972, 94, N 4, p. 494–495.

143. Grootenhuis P. The mechanism and application of effusion cooling. — J. Roy. Aeronaut. Soc., 1959, 63 N 578 p. 73–89.

146. Description of combustion chamber fabrication sequence for space Shuttle main engine. — Space World, 1974, N 11, p. 29–30.

145. DebrockS.C., Rudey C.J. Agena primary and integrated secondary propulsion systems. — J. Spacecraft and Rockets, 1974, 11, N 11, p. 769–777.

148. Dipprey D.F., Sabersky A.H. Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. — Intern. J. Heat and Mass .Transfer, 1963, 6, N 5, p. 329–353.

147. Devis H. The desing and development of the Thiokol XLR 99 rocket engine for the X-15 aircraft. — J. Roy. Aeronaut. Soc., 1963, 67, N 626, p. 79–91.

15 Dornberger. V-2 Schuss ins Weltall. Munchen, Bechrle-Verl., 1952.

149. Dooling D., jun. Space Shuttle main engine. — Spaceflight, 1972, 14, N 2, p. 55–57.

152. Ellion M.E. New technique for obtaining heat-transfer parameters of the wall and combustion gas in a rocketmotor. — Trans. ASME, 1951, 73, N 2, p. 102–114.

151. Dunes P., Wheeler H.L, jun. Experimental study of cooling by injection of a fluid through a porous material. — J. Aeronaut. Sci., 1948, 15, N 9, p. 509–521.

154. Engines improved by quick brazing. — Missiles and Rockets, 1960, 6, N 2, p. 35–37.

153. Elliott D.G., Bam D.Ft., Silver S. Calculation of turbulent boundary-layer grouth and heat transfer in axisymmetric nozzle. — Techn. Rep. JPL, 1963, N 32–387.

156. Expandable rocket nozzles. — Interavia Air Lett., 1970, N 7039, p. 5.

155. Epstein P.S., Plesset M.S. On the stability of gas bubbles in liquid-gas solutions. — J. Chem. Phys., 1950, 18, N 11, p. 1505–1509.

158. Farber E.A., Scorab R.L Heat transfer to water boiling under pressure. — Trans. ASME, 1948, 70, N p. 369–384.

15 F-1 rocket tests. — Aviat. Week and Space Technol., 1961,74, N 19, p. 117.

160. Pina P.E. The new phenolic glass fibre moulding compounds. — Reinf. Plast., 1957, 1, N 8, p. 20–22.

15 Feld D. The Agena engine. -Astronautics, 1961, 6, N 3, p. 28–29 68–69.

162. First close-up photo shows F-1 engine. — Aviat, Week and Space Technol., 1963, 78, N 20, p. 31.

161. Finlay W.L, Vordahl M.B., Ma-loue R.F. New titanium alloys. — Metal Progr., 1958, 74, N 3, p. 134–145.

164. Fridman N. A theoretical and experimental investigation of rocket-motor sweat cooling. — J. Amer. Rocket Soc. 1947, N 79, p. 147–154.

16 Fluorine rocket. — Aeroplane and Astronaut., 1960, N 2555, p. 508.

166. Gerhart P.M., Thomas LC Prediction of heat transfer for turbulent boundary layer with pressure gradient. — AIAA Journal, 1973, 11, N 4, p. 552–554.

16 Pat. 2986875 (US). Fuel additives / P.O. George. Publ. 6.06.61.

168. Goddard R.H. Rocket development: Liquid-fuel rocket research, 1924— 194 N.Y., 1948.

167. Goddard Ft.H. First report on rocket development to the trustees of Clark university (April 1, 1922). — In: The papers of Robert H. Goddard. N.Y. 1970, vol. 1, p. 477–483.

170. Gregory J.W. AIAA Paper N 70–718, 197 — In: AIAA 6th Propuls. joint spec. Conf., June 15–19, 1970.

169. Goddard R.H. Supplementary report to trustees Clark university on work: Performed July 1921 to August 1923 (August, 1923). — In: The papers of Robert H. Goddard. N.Y., 1970, vol. 1, p. 498–508.

17 Guided missiles, 195 — Flight Intern., 1956, 70, N 2498, p. 893–911.

171. Grootenhuis P. The mechanism and application of effusion cooling. — J. Roy. Aeronaut. Soc., J959, 63, N 578 p. 73–89.

174. Zborowski H.Ph.G.AR. von. BMW-developments. — In: History of german guided missiles development. Brunswick, 1957, p. 297–324.

173. Hastrup R.C, Sabersky R.H., Berts D.R., Noel M.B. Friction and heat transfer in a rough tube at varying Prandtl numbers. — Jet Propuls., 1958, 28, N 4, p. 259–263.

176. Hieronymus W.S. Wide use of composites expected. — Aviat. Week and Space Technol., 1970, 92, N 25, p. 29–35.

17 Rocket encyclopedia / Ed. J.W. Her-rick. Los Angeles, 1954.

178. High-pressure thrust chamber staticfired. — Aviat. Week and Space Technol., 1963, 79, N 11, p. 30.

177. High-pressure engine facility built.— Missiles and Rocket, 1966, 8, N 16, p. 21.

180. Huang D.H. Aerospike engine technology demonstration for space propulsion. — AIAA Pap., 1974, N 1080.

179. Hottel H.C., Egbert R.B. Radiant heat transmission from water vapor. — Trans. Amer. Inst. Chem. Eng., 1942, 38, p. 531–569.

18 Hyman S.C. A note on transpiration cooling. — Jet Propuls., 1956, 26, N 9, p. 780.

181. Hughes T.A. New concepts in ablative chamber for high-performance liquid rocket engine. — AIAA Bull., 1965, 2, N5, p. 1238.

18 Interavia Air Lett., 1960, N 4587, p. 6.

18 Improved rocket propulsion system. — Interavia Air Lett.. 1972, N 7588, p. 4.

186. Jones W.C. Optimization of reinforced plastics in ablative rocket nozzle and re-entary body applications. — In: 8th Nat. symp. aerospace-hydrospace. San Francisco (Cal.l, 1965.

185. Jakob M. Heat transfer in evaparation and condensation. — Mech. Eng., 1936, 58, N 61, p. 643–660.

188. Judge J.F. Surveyor engine in final development. — Missiles and Rockets, 1965, 16, N4, p. 18–21.

187. Judge J.F. NASA, AG-funding Avco multidirectional reinforced plastics. — Technol. Week, 1966, 19, N 18, p. 28–29.

190. Kay J., Keenan J.H., McAdamsW.H Report of progress on measurements of friction coefficients, recovery factors and heat transfer cofficients for subsone flow of air in a pipe. — Trans. ASME, 1951, 73, N 3, p. 267–279.

189. Karman T. The analogy between fluid friction and heat transfer. — Trans. ASME, 1939, 61, N 8, p. 705–710.

19 Kens-Nowarra. Die Deutschen Flug-sengs, 1933—194 Munchen, 1968.

191. Kemmer P.H. Development of glass-reinforced low-pressure plastics for aircraft. — Mod. Plast. 1944 21 N 9 p. 89–93.

19 Knuth E. The mechanics of film cooling. Pt II. — Jet Propuls., 1955, 25, N 1,p. 16–25.

19 Knuth E. The mechanics of filmcooling. Pt I. — Jet Propuls., 1954, 24, N 6, p. 359–365.

196. Krebs H. Development of а liquid rocket engines an Messerschmit Bfllkow-Blohm GMBH (AIAA/SAE 8th joint pro-puls. spec. conf.). — AIAA Pap., 1972, N 72–1104.

19 Kopituk R.C. Cooling prolongs X-15 engine life. — SAE Journal, 1961, 69, N 5, p. 71.

19 Latzko H.Z. — Angew. Math, und Mech., 1921, N 1, S. 268–277.

197. Lamont E.A. The aerospike engine system for the space tug: A status report. -AIAA Pap., 1973, N 1245.

200. Librizzi J., Cresci R.J. Transpiration cooling of a turbulent boundary layer in an axisymmetric nozzle. — AIAA Journal, 1964, 2, N4, p. 617–624.

199. Libby P.A., Baronti P.O., Napoli-tano L. Study of the incompressible turbulent boundary layer with pressure gradient. — AIAA Journal, 1964, 2, N 3, p. 445–452.

202. Loftus H.J., Montanino L.N., Nasiak L.D., Schmit C.M. Additives for heat flux reduction. — AIAA Pap., 1973, N 1289.

201. Loftus H.J. Application of high-density nitric acid oxidizer and UDMH with silicone additive fuel to the Agena rocket engine. — AIAA Pap., 1971, N 71–736.

204. Masters A. I., Colbert J.E., Brooke A.W. Flox/methane pump-fed engine systems. — AIAA Pap., 1969, N 64–510.

203. Malina F.J. The US army air corps jet propulsion research project, Galcit project N 1, 1939–1946: A memoir. — In: Essays on the history of rocketry and astronautics: Proc. Third through the Sixth hist. Symp. on the International Academy of Astronautics, 2, p. 153–201 (Mar del Plata, Argentina, Oct. 10, 196 Constance, German Federal Republic, Oct. 11–12, 197 Brussels, Belgium, Sept. 23, 1971, Vienna, Austria, Oct. 13, 1972).

206. Mayer E., Sartas J. Transpiration cooling in porous metal walls. — Jet Propuls., 1954, 24, N 6, p. 366–368, 378, 396.

205. Mayer E. Analysis of convective heat transfer in rocket nozzles. — J. Amer. Rocket Soc., 1961, 31, N 7, p. 911–917.

208. McGuire F.G. Compact engine boosts navy target drone. — Missiles and Rockets, 1961, 9, N 6, p. 22–23.

20 McAdams W.H. Heat transmission. N.Y., 1933.

210. Missiles, 195 — Flight, 1957, N 2550, p. 869–880, 893–906.

209. McGuire F.G. STL/Bell Draco could fill pre-Saturn booster gap. — Missiles and Rockets, 1961, 9, N 14, p. 24–25.

212. Mulready R.C. LR-115 Oxygen-hydrogen engine. — Astronautics, 1961, 6, N 3, p. 26–27, 85–86.

21 Missiles and Rockets, T958, 4, N 23.

21 Pat. 3190070, kl. 60–36,6 (US). Reaction motor construction / E. Neu. 1950.

21 NASA rensable engine contracts. — Interavia Air Lett., 1970, N 6998, p. 2.

21 News from the world of space exploration. — Space World, 1970, G-6–78, p. 52-j68.

21 New rocket alloy. — Spaceflight, 1966, 8, N 4, p. 128.

21 Nikuradse J. Lows for flow in rough pipes. — VDI-Forschungsh. B, 1933, 361, N4.

217. Newton EH., McElroy W.D., Whi-telay A.H. On cavity formation in water. — J. Appl. Phys., 1947, 18, N 2, p. 162–172.

220. Only seven companies bid for Saturn S-1.—Aviat.Week and Space Technol., 196 75, N 17, p. 27.

21 Oberth H. Die Rakete zu den Pla-netenroumen. Munchen; Berlin, 1923.

222. Owen P.R. Thomson W. R. Heat transfer across rough surfaces. — J. Fluid Mech., 1963, p. 321–334.

221. Osborn G.H.O., Gordon R., Cop-ten H.L., James G.S. Liquid-hydrogen rocket engine development. — In: Essays on the history of rocketry and astronautics. Wash., 1977, vol.11, p. 279–32 (NASA Conf. Publ.; N 2014).

224. P and W fires H2 engine. — Missiles and Rockets, 1963, 13, N 11, p. 10.

223. P and W a air-breathing hydrogen system. — Aviat. Week and Space Technol.,196 76, N 14, p. 55.

226. Pendray G.E. Early rocket developments of the American rocket society. — In: First steps toward space. Wash., 1974, p. 141–155.

225. Parke P.M. Molybdenum — a new high-temperature metal. — Metal Progr., 1951, 60, N.1, p. 81–96.

22 Pike I. Atlas pioneer ICBM and space-age worknorse. — Flight, 1962, 81, N 2758, p. 89–96.

227. Demoulin P. Les necherches sur les fusies a la R.M.I. — Les Ailes, 1956, 36, N 1609, p. 15.

23 Pratt-Whitney unveils H, engine mockup. — Missiles and Rockets, 1963, 13, N 12, p. 10.

22 Pratt/Whitney SSME performance. — Space Propuls., 1971, 8, N 21, p. 194–195.

23 Reinhardt T.F. Regenerative rocket cooling. — Aeronaut. — Eng. Rev., 1947,6, N4, p. 31.

231. Protest of Pratt-Whitney aircraft division of United aircraft corporation under NASA REP SSME-70–1; 8–17367 -Space Propuls., 1971, 8, N 24, p. 1–7.

234. Rheinfrank G.B., fun., Norman W.A Application of glass laminates to aircraft. — Mod. Plast., 1944, 21, N 9, p. 94–97.

233. Reynolds O. On the extent and action of the heating surface for steam 142 boilers. — Proc. Manchester Lit. and Phys. Soc., 1874, 14, N 7, p. 7–12.

236. Robinson А. Т., McAlexander R. L, Ramedell J.D., Wolfson M.E. Transpiration cooling with liquids metals. — AIAA Journal, 1963, 1, N 1, p. 89–95.

23 Richardson E.A Sweat cooling. — J. Aeronaut. Sci., 1949, 16, p. 62–69.

23 Rocketdyne J-2 Motor. — Interavia Air Lett., 1960, N 4590, p. 8.

23 Rocket-motor cooling. — Flight, 1955, N 2414, p. 559.

24 Rose J.W. Tantalum and columbium. — Amer. Mach., 1954, 12/IV, p. 189–198.

239. Roksenow W., Clark J. A study of the mechanism of boiling heat transfer. — Trans. ASME, 1951, 73, N 3, p. 609–620.

242. Saberski R.H., Mulligan H.E On the relationship between fluid friction and heat transfer in nucleate boiling. — Jet Propuls., 1955, 25, N 1, p. 9–12.

241. Saberski R.H., Gates C.W., jun. On the start of nucleation in boiling heat transfer. — Jet Propuls., 1955, 25, N 2, p. 67–70.

244. Schilling M. The development of the V-2 rocket engine. — In: History of Herman guided missiles development. 1957, p. 281–296.

243. Sanger-Bredt I., Engel R. The development of regeneratively cooled liquid rocket engines in Austria and Germany, 1926—194 — In: First steps toward space. Wash., 1974, p. 217–246.

246. Seader J.D., Wagner W.R. Regenerative cooling of rocket engines. — Chem. Eng. Symp. Ser., 1964, 60, N 52, p. ISO-150.

245. Schussler M. Columbium: A candidate for space vehicles. — Precis. Metal, 1972, 30, N 8, p. 29–32.

248. Seban R.. McLaughlin E.F. Heat fransfer in tube coils with laminar and turbulent flow. — Intern. J. Heat and Mass Transfer, 1963, 6, N 5, p. 387–395.

247. Seban R.A., Emery A., Levey A. Heat transfer to separated and reattached subsonic turbulent flows obtained downstream of a surface step. — J. Aero/Space Sci., 1959, 26, N 12, p. 809–814.

250. Sellers J.P., Jun. Effectiveness of RP-1 film cooling in a large rocket motor. — ARS Journal, 1962, 32, N 9, p. 1388–1389.

249. Sellers J.P., jun. Effect of carbon deposition of heat transfer in LOX/RP-3 thrust chamber. — ARS Journal, 1961, 31 N 5, p. 662–663.

25 Shuttle performance gain planned. — Aviat. Week and Space Technol., 1971, 94, N6, p. 16.

251. Shesta J. Reaction motors incorporated — first large scale american rocket company: A memoir: Prepr. JAF-78-A- 1978.

254. Sieder E.N., Tate G.E. Heat transfer and pressure drop of liquids in tubes. — Industr. and Eng. Chem., 1936, 28, N 12, p. 1429–1435.

253. Sibulkin M. Heat transfer to an incompressible turbulent boundary layer and estimation of heat-transfer coefficients at supersonic nozzle throats (1954). — J. Aeronaut. Sci., 1956, 23, N 2, p. 162–172.

25 Small rocket yields high thrust. — Missiles and Rockets, 1963, 12, N 3, p. 21.

25 Small engines for space. — Engineer, -1966,222, N 5769, p. 288.

25 Sounders O., Colder P. Some experiments on the heat transfer from a gas flowing through a convergent-divergent nozzle. — Proc. Heat Transfer and Fluid Mech. Inst., 1951.

257. Smith J.W., Epstein N. Effect of wall roughness on convective heat transfer in commercial pipes. — AlChE Journal, 1957, 3, p. 242–248.

26 Stambler I. Simplicity boosts Able-Star. — Space/Aeronaut., 1961, 36, N 2, p. 59–64.

25 Space Propuls., 1971, 8, N 14.

262. Stephanon S.E., Ward Т.Е., Holm-gren J.S. Application of heat pipe technology to rocket engine cooling. — AIAA Pap., 1969, N582.

26 Stemmer I. Rahetenantriebe. Zurich, 1951.

264. Strategic missiles. — Flight, 1962, 82, N 2809, p. 743–750, 752, 753, 755, 756, 758, 759, 762, 763, 766.

263. Stone I. Flight of Saturn 1B will test J-2 engine. — Aviat. Week and Space Technol., 1966, 87, N 7, p. 53–57.

26 Sutton G.P. Rocket propulsion elements: An introduction to the engineering rockets. N.Y., 1949.

26 Studhalter W.R. J-2 rocket engine design. — SAE Journal, 1963, 71, N 7, p. 52–54.

26 Tayler H. Flight of M-1 delayed three years. — Missiles and Rockets, 1963, 12, N 16, p. 16–17.

267. Sutton G.P., Wagner W.R., Seader J.D. Advanced cooling techniques for rocket engines. — Astronaut, and Aeronaut., 1966, 4, N 1, p. 60–71.

270. Tetervin N. Approximate calculation of Reynolds analogy for turbulent boundary layer with pressure gradient. — AIAA Journal, 1969, 7, N 6, p. 1079.

26 Ten years of project SQUID — a bibliography. — Jet Propuls., 1956, 26, N p. 660–680.

27 The promise of reinforced plasticsin defense. — Mod. Plast., 1951, 28, N 7, p. 55–59, 146, 149, 152–156; N 8, p. 91–95.

27 The papers of Robert H. Goddard. N.Y., 196 Vol.2.

27 Titan 3e transtage successfully tested. — Aviat. Week and Space Technol., 196 78, N 17, p. 31.

27 Thickol C-1 radiamic engines hot tested. – Interavia Air Lett., 1966, N 6066, P. 5.

27 Ward B. New devices assisting rocket booster output. — Electron. News, 196 9, N 447, p. 36.

275. Tsongas A.G. Reverse-flow film cooling of a small rocket engine chamber. — J. Spacecraft and Rocket, 1966, 3, N 3, p. 444–445.

278. Welsh W.E., jun., Witte A.B. A comparison of analytical and experimental local heat fluxes in liquid-propellent rocket thrust chambers. — J. Heat Transfer, 1962,84, N 1,p. 19–28

277. Weinbaum S., Wheeber H.L Heat transfer in sweat cooled porous metals. — J. Appl. Phys., 1949, 20, p. 112–113.

28 Wilson L.D. AJ-550 space Shuttle main engine.— AIAA Pap., 1971, N 71–650.

279. Witte A.B., Harper E.Y. Experimental investigation of heat transfer rates in rocket thrust chamber. — AIAA Journal, 1963, 1, N 2, p. 443–451.

282. Yaffee M.L. Columbium thrust chamber in test-fired. — Aviat. Week and Space Technol., 1964, 80, N 13, p. 47–48.

28 Wyld J.H. The I iqu id-propel la nt rocket motor. — Mech. Eng., 1947, 69; N 6, p. 457–464.

284. Zucrow M.J. Liquid propellent rocket power plant. — J. Amer. Rocket Soc., 1947, 69, N 72, p. 26–44.

283. Yaffee M.L. Small/pulsed rocket engine tested. — Aviat. Week and Space Technol., 1970, 93, N 14, p. 53–54.

286. Zucrow M.J., Beighley CM. Experimental performance of WENA — JP-3 rocket motors of different combustion pressure. — J. Amer. Rocket Soc., 1952, 22, N6, p. 323–330.

28 Zucrow M.J. Liquid-propellant rocket power plants. — Trans. ASME, 1947, 69, N 8, p. 847–857.

288. Zucrow M.J., Sellers J.P., jun. Experimental investigation of rocket motor film cooling. — ARS Journal, 1961, 31, N 5, p. 662–663.

287. Zucrow M.J., Graham R.W. Some considerations of film cooling for rocket motors. — Jet Propuls., 1957, 27, N 6, p. 650–656.





Далее:
ТРИ НОВЫЕ ТЕХНОЛОГИИ — ТРИ ГОСУДАРСТВЕННЫХ КОМИТЕТА.
Февраль 1961.
Октябрь 1961.
КОСМИЧЕСКИЕ ТРАССЫ.
Февраль 1962.
Май 1962.
Август 1962.
Ноябрь 1962.
Январь 1963.


Главная страница >  Хронология