Космонавтика  Автогенераторные каскады преобразователей 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 [ 15 ] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

частично разряжается. Во время открывания транзистора Q10 перемагничивание сердечника ТЗ происходит в направлении, обратном предыдущему. Если баланс циклов открывания и закрывания транзисторов Q9 и Q10 соблюдается, то перемагничивание сердечника происходит симметрично. Напряжение в точке соединения С5 и Сб в этих условиях сохраняется постоянным на уровне, равном половине напряжения питания.

При проектировании источника питания и расчете элементов базовой цепи силового транзистора основное внимание деляется обеспечению максимальной скорости его переключения. Чем короче этап переключения, тем меньще выделяется тепловой энергии и выще общий КПД импульсного преобразователя напряжения. Для ускорения процесса переключения в базовую цепь транзистора Q9 включена цепочка: конденсатор С21 - диод D21 -резистор R36. Аналогичная последовательность из элементов С22, D22 и R37 имеется в базовой цепи транзистора Q10. Так как базовые цепи у обоих транзисторов абсолютно идентичны и процессы, протекающие в них, те же, то объяснение работы этой цепочки будет рассмотрено на примере ее взаимодействия с транзистором Q9. Таким образом, все, что сказано для базовой цепи транзистора Q9, будет справедливо и для аналогичных элементов, подключенных к транзистору Q10. Естественно, что при сопоставлении процессов, протекающих в транзисторах Q9 и Q10, нужно учитывать временной сдвиг.

В начальный момент возникновения положительного напряжения на обмотке, подключенной к базовой цепи транзистора Q9 (положительная обкладка конденсатора С21), конденсатор С21 разряжен и представляет собой коротко замкнутую цепь. По цепи: конденсатор С21 - резистор R40, переход база-эмиттер транзистора Q9 - начинает протекать максимально возможный ток. Такой скачок тока позволяет произвести резкое открывание транзистора Q9. По мере зарядки конденсатора С21 происходит падение уровня тока, протекающего через него в базу транзистора Q9. Когда конденсатор С21 полностью зарядится, ток, поступающий через него, снизится до нуля. Напряжение на обкладках конденсатора определяется падением напряжения на диоде D21 и резисторе R36, через которые протекает ток базы транзистора Q9, поддерживающий его в открытом состоянии после зарядки конденсатора С21. По окончании положительного импульса в обмотке трансформатора Т2 и начала мертвой зоны резко, благодаря заряженному конденсатору С21, меняется полярность напряжения, приложенного к переходу база-эммитер транзистора Q9. Это приводит к ускоренному закрыванию транзистора Q9 и рассасыванию избыточных носителей в базе.

Напряжение на переходе база-эмиттер принимает небольшое отрицательное значение. Диод D21 с момента наступления интервала мертвой зоны имеет обратное смещение, что позволяет сохранять напряжение на конденсаторе С21 неизменным в течение всего интервала. Наличие этого элемента имеет существенное значение для работы всей схемы. При отсутствии диода происходил бы постепенный перезаряд емкости конденсатора С21, и базовый потенциал транзистора Q9 постепенно приближался бы к потенциалу его эмиттера, снижая степень его закрытости . На диаграмме, приведенной на рис, 2,12в (а также на рис. 2.12г), интервал мертвой зоны отмечен прямой неопадающей линией с уровнем примерно -0,7 В. При возникновении на базовой обмотке импульса отрицательной полярности, соответствующего открыванию транзистора Q10, усиливается степень закрывания транзистора Q9, надежно поддерживая его в этом состоянии, в то время как транзистор Q10 открыт и находится в проводящем состоянии. После отрицательного импульса на переход база-эмиттер транзистора Q9 вновь воздействует сигнал паузы, и транзистор Q9 сохраняет закрытое состояние. А для транзистора Q10 наступает время первичного выхода из проводящего состояния. Завершение второго интервала мертвой зоны для Q9 наступает с приходом нового фронта импульса положительной полярности. Рабочий цикл для Q9 вновь начинается с ускоренного открывания этого транзистора током, протекающим через конденсатор С21. На базовую цепь транзистора Q10 поступает отрицательный импульс напряжения и, благодаря действию конденсатора С22 и диода D22, в этот промежуток времени он находится в закрытом состоянии.

После пояснений работы элементов базовых цепей силовых транзисторов становится понятно, почему конденсаторы С21 и С22 являются ускоряющими или форсирующими процесс переключения транзисторов полумостового усилителя из состояния отсечки в проводящее и обратно. Наличие диодов D21 и D22 влияет на поддержание закрывающего потенциала на базах Q9 и Q10 в течение интервалов мертвой зоны и действия импульсов отрицательной полярности.

В завершение описания работы силового каскада приведем диаграммы напряжений в точке соединения эмиттера Q9 и коллектора Q10. На рис. 2.13 представлены три диаграммы, показывающие поведение силового каскада в целом при изменении , уровня нагрузки во вторичных каналах.

На рис, 2.13а показана форма напряжения на i коллекторе транзистора Q10 при полном отсутствии нагрузки во вторичных цепях, подключаемой через разъемные соединители блока питания.




и.в,

300-

Рис 2.13. Диаграммы напряжения на силовых транзисторах при различных уровнях нагрузки

Источник питания, выполненный по принципиальной схеме, соответствующей рис. 2 2, может запускаться без ограничения нижнего предела величины нагрузки. Выходы вторичных каналов подключены к внутренним цепям защиты источника питания, которые и в данном случае составляют единственные нагрузочные элементы. Без подключения потребителей энергии к выходам вторичных каналов напряжений общее сопротивление нагрузки, приведенное к первичной обмотке трансформатора ТЗ, имеет достаточно большую величину. Поэтому на рис. 2.13а только моменты переключения транзисторов силового каскада имеют короткую продолжительность - крутые фронты и резкие спады. Крутой фронт импульса от напряжения 200 В до уровня 300 В и характерный спад напряжения до 200 В соответствует времени включенного состояния транзистора Q9. Интервал времени от крутого спада напряжения с уровня 100 В практически до нуля и постепенное повышение напряжения до 100 В составляет время нахождения в проводящем состоянии транзистора Q10. Промежуточные ин-к тервалы спадающего и возрастающего напряжения i между активными состояниями силовых транзис-I торов - это мертвые зоны . Если в реальных условиях наблюдать форму импульсов напряжения на коллекторах транзисторов Q9 и Q10, то на осцил-\ лографе можно будет увидеть лишь очень тонкие импульсы, больше похожие на выбросы. Это объясняется малым потреблением энергии вторичными цепями источника питания, поэтому сигнал рассогласования, формируемый в IC1, имеет слишком малое отклонение от уровня эталонного опорного напряжения. В результате IC1 формирует очень узкие импульсы уппавления для возбуждения каскада усилителя мощности. Импульсы положительной полярности малой длительности I подают в базовую цепь силового транзистора до-[ статочно энергии для начального толчка, необхо-} димого для быстрого открывания транзистора. Но энергетического запаса недостаточно для его ускоренного и глубокого запирания, поэтому на диаграмме

наблюдаются пологие спады в сигнале при закрывании транзисторов.

Влияние возрастания величины коммутируемого тока на форму напряжения в данной контрольной точке проявляется уже при подключении к выходу вторичного канала +5 В активной нагрузки, потребляющей ток 0,8 А (см. диаграмму на рис. 2.136). Форма импульсов напряжения стала трапецевидной, и увеличилось время открытого состояния транзисторов Q9 и Q10. Импульсы управления транзисторами Q9 и Q10, поступающие от каскада промежуточного усиления, имеют большую энергетическую насыщенность, однако в течение мертвой зоны еще наблюдаются участки плавного изменения уровня напряжения, свидетельствующие о сравнительно медленном закрывании силовых транзисторов.

Практически прямоугольная форма напряжения на транзисторах силового каскада приведена на рис. 2.13в. Такую форму приобретает этот сигнал при уровне нагрузки по каналу +5 В и ~3 А. На этой диаграмме четко выражены фазы каждого эта-па.работы силовых транзисторов. Крутые фронты и спады импульсов, а также горизонтальный уровень напряжения в течение мертвой зоны свидетельствуют о том, что источник питания вошел в рабочий режим. Переходные процессы переключения транзисторов занимают сопоставимо малое время относительно интервалов нахождения транзисторов в каждой из активных фаз коммутационного процесса.

244. Вторичные цепи источника питания

Способы конкретной реализации выходных цепей в источниках питания различных фирм-производителей могут различаться. В данном разделе на примере принципиальной схемы (см. рис. 2.2) будет рассмотрена структура выходных каскадов, которую можно рассматривать в качестве основной.



Также будет показан и альтернативный способ их построения.

Вторичные цепи источника питания - это каскады, выходы которых непосредственно подключаются к устройствам потребителя, то есть к нагрузке. Источником энергии, подаваемой во вторичные цепи, является силовой каскад импульсного преобразователя. Благодаря действию магнитного потока, возбуждаемого переменным током первичной обмотки трансформатора ТЗ, во вторичных обмотках ТЗ наводится ЭДС самоиндукции. Форма ЭДС на вторичной обмотке имеет вид, аналогичный трехуровневому сигналу на коллекторе Q10 (см, рис.2.13). На принципиальной схеме (см. рис. 2.2) выводы вторичных обмоток трансформатора ТЗ имеют нумерацию от 1 до 5. Средний вывод вторичной обмотки (точка 3) подсоединен к общему проводу вторичной цепи. Для однозначного подключения начала обмоток трансформатора на рисунке обозначены точками. Количества витков в парных обмотках 2-3 и 3-4, а также 2-1 и 4-5 равны. Таким образом, относительно средней точки существует симметрия вторичных обмоток. Форма переменного сигнала на обмотках 3-2 и 3-4 представлена на рис. 2.14.

В данном случае любая из диаграмм отображает форму напряжений на обеих обмотках, потому что они одинаковы и только сдвинуты во времени. Подключения обмоток 3-2 и 3-4 относительно средней точки противоположны. Противоположны по фазе и сигналы на них. Пусть верхняя диаграмма соответствует напряжению на выводе 2 трансформатора ТЗ, снятого относительно общего провода вторичной цепи - вывода 3. Тогда на нижней диаграмме представлен вид напряжения на выводе 4, снятого также относительно вывода 3 (временной интервал один и тот же). На каждой диаграмме любое отклонение напряжения от нулевого значения (положительное или отрицательное) соответствует времени нахождения одного из силовых

I I

I I 1 I

Рис. 2.14. Форма сигнала на вторичных обмотках 3-2 и 3-4 трансформатора ТЗ

транзисторов в активном, то есть открытом состоянии. Временные интервалы, в течение которых на выводах обмоток действуют импульсные сигналы, на рис. 2.14 обозначены как t. Паузы в активной работе силовых транзисторов преобразователя, предшествующие каждому импульсу и следующие за ним промежутки мертвых зон , обозначены на рис. 2.14 как t . Уровень напряжения в этот промежуток времени имеет нулевое значение. Представленные диаграммы качественно отражают картину процесса формирования напряжения на выводах вторичных обмоток трансформатора ТЗ. Временные параметры всех составляющих сигнала полностью зависят от подключенной нагрузки.

Электропитание всех видов нагрузки, подключаемой к вторичным каналам, осуществляется постоянным напряжением с заданным уровнем стабильности. Элементы вторичной цепи предназначены для преобразования входного импульсного напряжения в постоянное, его фильтрации и, по мере необходимости, дополнительной стабилизации непосредственно во вторичных каскадах.

Элементы вторичного тракта должны выбираться и устанавливаться с учетом конструктивных особенностей конкретного устройства. Главными из них можно считать следующие:

источником вторичных напряжений может служить импульсный преобразователь, формирующий сигналы частотой до 70 кГц;

ток потребления по основным вторичным каналам может превышать 20 А;

основная регулировка выходного напряжения производится воздействием на силовую цепь преобразователя с помощью контроля уровня напряжения только основных каналов;

стабильность выходных напряжений должна поддерживаться на заданном уровне во всем диапазоне изменения нагрузки, соответствующем нормам технических характеристик;

вторичные напряжения имеют абсолютные значения напряжения, не превышающие 12 В.

С учетом максимальной нагрузки источника питания средний ток, протекающий через первичную обмотку трансформатора ТЗ, имеет величину -0,9 А. Токи же во вторичных цепях, особенно у каналов +5 В и +3,3 В, составляют десятки ампер. Самая большая токовая нагрузка ложится на каналы с относительно небольшими выходными напряжениями. В такой ситуации использование в этих каналах обычных схем двухполупериодных выпрямителей с четырьмя мощными кремниевыми диодами привело бы к существенному снижению общего КПД преобразователя. Это было бы особенно заметно при повышении токовой нагрузки. В данном случае используется преимущество высокочастотных



1 2 3 4 5 6 7 8 9 10 11 12 13 14 [ 15 ] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38