Космонавтика  Автогенераторные каскады преобразователей 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [ 16 ] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

трансформаторов, магнитопроводы которых имеют высокое значение магнитной проницаемости. Значение количества витков обмотки высокочастотного импульсного трансформатора на 1 В напряжения в трансформаторах прямо пропорционально частоте преобразования и магнитной проницаемости материала сердечника. В нашем случае импульсный силовой трансформатор имеет несколько витков на

1 В. Изготовители источников пи ания предпочитают создавать выпрямите и ля вторичных каналов на основе схемы с двумя полуобмотками и общей средней точкой. Для выпрямления напряжения каждого канала применяются по два диода, подключаемых к выводам полуобмоток. Количество витков вторичной обмотки при этом увеличивается незначительно, но повышается КПД. Нагрузка к вторичным обмоткам подключается симметрично относительно средней точки. При таком втслю-чении обеспечивается равномерность распределения токовой нагрузки на оба транзистора силового каскада. Транзисторы Q9 и Q10 работают в сбалансированном режиме, что благоприятно сказывается и на условиях функционирования трансформатора ТЗ.

Для выпрямителя канала +5 В используется сборка с двумя диодами Шоттки типа D83-004. Аноды диодов сборки подсоединяются к выводам

2 и 4 трансформатора ТЗ. Катоды диодов сборки соединены между собой и подключаются к дросселю фильтра. Включение вторичной обмотки производится так, что на выводе 2 напряжение изменяется синфазно с колебаниями на коллекторе Q10, на выводе 4 фаза напряжения обратная. Во время формирования импульса положительной полярности в течение открытого состояния Q9, открывается диод, подключенный к выводу 2. Диод, соединенный с выводом 4, в это время находится под воздействием отрицательного импульса и смещен в обратном направлении. Ток через него не протекает. В течение мертвой зоны на всех диодах выпрямительной схемы независимо от принадлежности к каналу установлено нулевое входное напряжение. Подпитки нагрузочной цепи в этот момент не происходит. Временной интервал открытого состояния транзистора Q10 совпадает с возникновением на выводе 4 импульса положительной полярности и переводом в проводящее состояние диода, подключенного к этому выводу. На второй диод этой сборки подается обратное смещение импульсом отрицательной полярности. Энергия в цепь нагрузки поступает равномерно при включении любого из силовых транзисторов. Равномерное поступление импульсных сигналов позволяет применять комбинированный фильтр со сравнительно небольшими значениями индуктивности и емкости. Сравнительный анализ номиналов этих элементов может

быть проведен в сопоставлении с требованиями к параметрам аналогичных цепей для обычного трансформаторного источника с питанием от переменного напряжения с частотой 50 Гц.

В течение действия импульсов напряжения на выводах вторичных обмоток ток протекает то через один диод выпрямителя, то через другой. В эти моменты происходит подзарядка емкостей фильтров и накопление энергии в дросселях. В соответствии с законом коммутации ток, проходя через индукг тивный элемент, не может изменяться мгновенно. В течение пауз энергия, накопленная в дросселе, подается в нагрузку, поддерживая номинальный уровень тока и обеспечивая равномерность его поступления.

Необходимость применения диодов Шоттки в цепях с наибольшим токовым потреблением диктуется их преимуществами перед кремниевыми. Использование диодов Шоттки предпочтительнее прежде всего с энергетической точки зрения, а также из-за их скоростных возможностей в режиме переключения. Оба фактора одинаково существенны. Первый заключается в меньшем падении напряжения при прямом смещении диода. У диодов Шоттки прямое падение напряжения составляет ~0,6 В. Эта величина оказывается существенной, так как тот же параметр у мощных кремниевых диодов равен 1-1,2 В и более в зависимости от уровня протекающего тока. Использование кремниевых диодов в выпрямителе канала +5 В привело бы к дополнительной потере 20% энергии только в этой цепи.

Второй фактор важен потому, что для цепей выпрямления импульсных сигналов необходимо подбирать диоды, соответствующие не только требованиям по максимальному значению обратного напряжения и прямого тока, но и по времени восстановления обратного сопротивления. То есть диоды должны быть особыми, точнее, безинерционными. Когда нагрузка источника питания приближается к максимальной, длительность импульсных сигналов увеличивается, в то же время интервал мертвой зоны сокращается. Время переключения диодов вторичного выпрямителя из проводящего состояния в закрытое и обратно также уменьшается. Длительность фронта и спада входного импульса составляет десятые доли микросекунды. В предельном случае импульсы изменяющейся полярности следуют друг за другом. Выпрямительные диоды в течение смены полярности импульса (длительности фронта), должны полностью восстановить свои свойства. То есть время восстановления сопротивления диода не должно превышать 0,1-0,2 мкс. Если свойства диодов не отвечают этим требованиям, то в короткие промежутки времени, когда происходит переключение силовых транзисторов усилителя мощности, выпрямитель будет представлять

7-504



собой проводящую цепь, замыкающую вторичную обмотку. В момент переключения один диод должен выйти из проводящего состояния, а второй - включиться. Пусть время восстановления обратного сопротивления первого диода больше длительности фронта импульса, тогда существует время, когда первый еще не полностью закрывается, а второй под действием прямого напряжения начинает открываться. Нагрузка на открытый транзистор преобразователя возрастет, и появится всплеск тока. На фронте импульса возникнут помеховые высокочастотные выбросы. Силовой транзистор будет находиться в форсированном режиме до восстановления первым диодом обратного сопротивления. Таким образом, из-за возможного длительного переключения выпрямительных диодов транзисторы преобразователя начинают работать в режиме коммутации увеличенного тока и возникают дополнительные высокочастотные помехи. Первое явление приводит к перегреву силовых транзисторов, второе - к необходимости дополнительной фильтрации фронтальных помех. Избежать этих явлений можно двумя способами: применением мощных высокочастотных диодов и схемотехническими приемами.

Диоды Шоттки обладают относительно малым (менее 0,1 мкс) временем восстановления обратного сопротивления, поэтому применение сборок на их основе оправдано и с точки зрения выпрямления импульсных сигналов.

В схеме источника питания фирмы DTK сборка с диодами Шоттки применена и в канале выпрямителя +3,3 В. Тип сборки, установленной здесь, имеет обозначение F10P048.

Согласно принципиальной схеме рис. 2.2, к выводам 2 и 4 подключены дискретные выпрямительные диоды канала -5 В и две диодные сборки для каналов +5 В и +3,3 В. Сборки на основе диодов Шоттки предназначены для работы в цепях с высоким потреблением тока, в выпрямителе канала -5 В установлены обычные кремниевые диоды типа FR102.

Выпрямительные элементы, подключенные к выводам 1 и 5 трансформатора ТЗ, используются для формирования напряжений в каналах +12Ви-12В. Выпрямитель +12 В собран на основе сборки кремниевых диодов типа СТХ128. К выводам трансформатора сборка подсоединяется анодами диодов. Выпрямитель канала -12 В собран на основе двух диодов типа FR102, присоединенных к трансформатору своими катодами.

В под1слючении выпрямительных элементов к выводам 1, 5 и 2, 4 есть много общего, но в то же время есть и различие: параллельно выводам 1-5 включена RC цепь на элементах R56, С27, а для

выводов 2, 4 подобной цепочки не предусмотрено. Объясняется это тем, что в каналах +12Ви-12В применены кремниевые диоды, скоростные характеристики которых уступают диодам Шоттки выпрямителей каналов +5 В и +3,3 В. Время восстановления их обратного сопротивления сопоставимо с длительностью фронтов импульсов. Для увеличения длительности фронта и спада импульса и используется эта пропорционально интегрирующая цепь. С ее помощью происходит затяжка фронта для того, чтобы выпрямительные крем1П1евью диоды успели переключиться, и соответственно снижается нагрузка на силовые диоды в моменты их переключения.

В каждом из вторичных каналами применена практически одинаковая схема фильтрации выпрямленного напряжения. Все канальные фильтры содержат емкости и индуктивности. Фильтр канала +5 В - двухзвенный, ыслючает в себя Г- и П-об-разные фильтры. Филыры остальных каналов -однозвенные, Г-образные.

Потребление энергии каналами -12 В и +12 В может значительно отличаться. Однако их выпрямительные элементы подключены к одноименным выводам трансформатора ТЗ. К цепи обратной связи ШИМ регулятора подсоединен только выход канала +12 В. Уровень поступления энергии во вторичную цепь определяется мощностью нагрузки в канале +12 В. Для гашения избыточного напряжения в канале -12 В перед первым дросселем фильтра установлен дополнительный диод D30. Таким образом уравниваются уровни напряжений по каналам с абсолютным значением напряжения 12 В.

К выводу 5 обмотки трансформатора ТЗ подключен диод D25. Катод диода соединен с цепью питания микросхемы IC1. Логика построения системы питания ШИМ преобразователя состоит в том, что в начальный момент подключения источника питания к первичной сети происходит запуск автогенератора на транзисторе Q3. На микросхему поступает выпрямленное напряжение от диода D9. Сглаживается это напряжение конденсатором С24. Подача электропитания по данной цепи продолжается до тех пор, пока не произойдет возбуждение микросхемы IC1, усилителя мощности импульсного преобразователя и на вторичной обмотке ТЗ не появятся импульсные колебания. Импульсы положительной полярности открывают диод D25. Конденсатор С24 заряжается практически до их амплитудного значения. С этого момента уровень напряжения на С25 превышает амплитуду импульсов, подаваемых от автогенератора через D9. Диод D9 во время нормальной работы усилителя мощности находится в состоянии обратного смещения, и энергия в цепь питания IC1 поступает только от



вторичной обмотки трансформатора ТЗ. Автогенератор продолжает работать, но эффективно запиты-вает только канал дежурного режима компьютера.

В построении схемы стабилизации напряжения в канале +3,3 В тоже есть особенность: помимо фильтра на пассивных элементах здесь используется параметрический стабилизатор, в состав которого входят диод D31, транзистор Q11, управляемый стабилизатор ZIC1 и группа элементов, устанавливающих режимы работы активных компонентов.

Это можно объяснить следующим образом: выпрямительные диоды сборки SBD3 подключены к выводам 2 и 4 трансформатора ТЗ, то есть к тем же выводам, что и выпрямитель канала +5 В. Поступление энергии на эти выводы регулируется обратной связью, следящей только за состоянием канала +5 В. Без дополнительной регулировки уровни напряжений в каналах +5 и +3,3 В были бы практически одинаковыми.

Стабилизатор ZIC1 выполнен в корпусе с тремя выводами. Тип корпуса - Т092, аналогичен пластиковому корпусу отечественного транзистора КТ3107. Тип стабилизатора - TL431C. Напряжение стабилизации устанавливается внешним рези-стивным делителем и выбирается произвольно из диапазона 2,5-36,0 В. Погрешность напряжения стабилизации составляет 1-2%. Индекс С после наименования прибора указывает на температурный диапазон использования стабилизатора, который ограничен пределами 0-70 °С. Стабилизатор имеет три электрода, обозначения которых, согласно схеме рис. 2.2, приведены в скобках: анод (GND), катод (V0), вход опорного напряжения (VI). Расположение электродов в пластиковом корпусе показано на рис. 2.15.

Максимальное напряжение на катоде может составлять 37 В, ток катода - от -100 до 150 мА. Отрицательное значение тока приведено для случая прямого включения стабилизатора. Максимальный


Рис 2.15. Расположение электродов стабилизатора TL431 в корпусе T092 (вид сверху)

ЦБх .ист (V0)

Uon (VI)

Общий npobog (GND)

входной ток по опорному электроду - 10 мА. Типовое напряжение на опорном электроде - 2,495 В, при входном токе 1,8 мкА.

Схема включения стабилизатора TL431, поясняющая принцип его работы, приведена на рис. 2.16. Наименование точек подключения в схеме источника питания фирмы DTK на рис. 2.16 указано в скобках.

Схема вгспючения справедлива для случая, когда напряжение U. больше уровня U В простейшем случае включения стабилизатора TL431 используются токозадающий резистор R1 и резистивный делитель на R2, R3, определяющий уровень стабилизированного напряжения на катоде прибора. Значение выходного напряжения U.. зависит от номиналов резисторов, подключенных к входу опорного напряжения, и определяется из соотношения:

Uc,n=Uon(l+R2lR) + Ion Rl

(2.2)

Рис 2.16. Схема включения стабилизатора TL431

Резистивный делитель напряжения, определяющий уровень выходного напряжения стабилизатора TL431, на схеме, приведенной на рис. 2.2, составлен из сопротивлений R51, R49 и R50. При номиналах резисторов, указанных на принципиальной схеме рис. 2.2, уровень напряжения на катоде стабилизатора ZIC1, электрод VO, составляет ~2,8 В. Напряжение на базе транзистора Q11 имеет примерно такое же значение.

Анод нижнего по схеме диода сборки SBD3 соединен с выводом трансформатора через развязывающий дроссель L6. К аноду выпрямительного диода подключен катод диода D31, анод которого соединен с коллектором транзистора Q11 и с одной из об101адок конденсатора С28. Конденсатор С28 -керамический, рассчитанный на максимальное рабочее напряжение 100 В. С помощью элементов стабилизатора организована следящая связь за уровнем напряжения на выходе канала +3,3 В. Цепь, состоящая из резистора R55, транзистора Q11 и диода D31, шунтирует нижний выпрямительный диод сборки SBD3 и дроссель фильтра этого канала. Импульсами отрицательной полярности, появляющимися на выводе 4 трансформатора ТЗ, открывается диод D31 и через него заряжается конденсатор С28. Напряжение на базе транзистора Q11 фиксировано. Выходное напряжение канала +3.3 В изменяется в некоторых пределах. Увеличение положительного напряжения на выходе этого канала передается на эмиттер транзистора Q11 и приводит к открыванию данного транзистора. При этом выходная цепь канала через резистор R55 подютючается к источнику отрицательного напряжения, образованного диодом D31 и конденсатором С28. Происходит частичный разряд конденсатора С34, и выходное напряжение снова снижается до



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [ 16 ] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38