Космонавтика  Автогенераторные каскады преобразователей 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

уровня закрывания транзистора Q11. Максимальное рабочее напряжение конденсатора С28 не случайно выбрано таким большим. На конденсатор поступают импульсы, амплитуда которых может превышать 30 В. Заряд конденсатора С34 может достигать амплитудного значения импульсов, реальный же уровень напряжения на нем будет определяться общими рабочими условиями источника питания, зависящими от поведения нагрузки.

Для того чтобы в отсутствие нагрузки конденсаторы фильтров вторичных каналов не заряжались до амплитудных значений импульсного напряжения, параллельно и.м установлены балансные резисторы. Резисторы обеспечивают постоянный -частичный разряд выходных емкостей в течение всего цикла работы источника и быстрый полный разряд после его отключения от питающей сети.

Последним и достаточно важным элементом, работу которого следует рассмотреть, следует считать дроссель групповой связи L5. Обмотки дросселя выполнены на одном сердечнике. В каждом вторичном канале сразу после диодных выпрямительных элементов включено по одной обмотке дросселя. Направление намотки одинаково, обмотки синфазны. Каждая канальная обмотка дросселя - это составная часть общей цепи фильтрации импульсного напряжения, поступающего от выпрямителей. Обмотки дросселя L5 во всех каналах, кроме цепи фильтра +3,3 В, являются дополнением к канальным индуктивностям L1 - L4. В канале напряжения +3,3 В обмотка дросселя L5 - единственный индуктивный элемент сглаживающего фильтра.

Вторичные каналы не имеют дополнительных стабилизаторов, кроме установленных в цепи +3,3 В. ШИМ регулировки осуществляются по сигналам резистивных датчиков, подключенных к выходам каналов +5 В и +12 В. За состоянием остальных вторичных каналов слежение производится косвенным образом. Оно основано на влиянии токов, протекающих в цепях побочных каналов, на уровень общего магнитного потока, возбуждаемого в магни-топроводе дросселя L5. Благодаря единому магни-топроводу между канальными обмотками дросселя L5 существует магнитная связь. Взаимодействие обмоток через сердечник оказывает эффект, подобный работе трансформатора. Через обмотки протекают пульсирующие токи, действие каждого вызывает возникновение ЭДС самоиндукции в остальных. Токи, протекающие по обмоткам дросселя L5, имеют противоположное направление для каналов с положительными и отрицательными напряжениями. Результирующая ЭДС взаимоиндукции будет менять значение в зависимости от распределения нагрузки по каналам. Если в результате произвольного внешнего воздействия произойдет увеличение

токовой нагрузки только в канале отрицательного напряжения, это вызовет соответствующее увеличение потока магнитной индукции. Потоки положительных каналов, подключенных к цепи обратной связи, возбулсдают магнитный поток противоположной направленности. Величина потока при постоянной нагрузке остается неизменной. Магнитный же поток от канала с отрицательным напряжением будет возбуждать противо ЭДС в обмотках фильтра напряжений +5 В и +12 В. Произойдет некоторое снижение уровня напряжения в этих каналах. Сигнал о понижении номинального выходного уровня через резисторы R46 и R47 поступит на вход усилителя рассогласования микросхемы IC1. ШИМ регулятор отработает это воздействие увеличением ширины рабочей области импульсов, возбуждающих усилитель мощности. Произойдет увеличение энергии, поступающей в цепи вторичных каналов. Уровни напряжений в наиболее нагруженных каналах повысятся до номинального значения. Аналогичный процесс происходит при резком уменьшении нагрузки. В результате будет ограничена подача энергии во вторичные каскады, и система снова придет в состояние равновесия.

Кроме организации вторичных цепей по схеме, представленной на рис. 2.2, могут быть и другие варианты. Отдельные фирмы-изготовители предлагают свои решения в схемах фильтрации и стабилизации вторичных напряжений. Один из вариантов таких схем приводится на рис. 2.17.

В данной схеме (рис 2.17) в выпрямительной схеме канала +12 В использованы особые сборки на основе диодов Шоттки, а также дополнительные интегральные стабилизаторы. К выходу канала +12 В подключен и вентилятор. Позиционные обозначения элементов этого фрагмента условные и относятся только к компонентам данного рисунка. Рассмотрим характерные отличия этой схемы и сравним их со схемотехническими решениями, приведенными на рис. 2.2.

Здесь силовой трансформатор содержит две вторичные обмотки, выводы которых не соединены между собой. Нижняя по схеме обмотка подключается к выпрямительным элементам D1, D2 и SBD2, постоянное напряжение с которых, исключая напряжение + 12 В, подается во все вторичные каналы. Средняя точка этой обмотки подключена к общему проводу вторичных цепей. Аноды диодов, входящих в сборку SBD1, соединены с выводами отдельной обмотки, средняя точка которой подключена к выходу выпрямителя канала +5 В, то есть к катодам сборки SBD2. Такое включение позволяет снизить обратное напрялсение на диодах сборки SBD1 и использовать в качестве выпрямителей



+ 12В о-


SBD3

01 R6 -IZZH

С6 R8

R1 1

ZIC1

+З.ЗВ -си-

Рис. 2. /7. Принципиальная схема вторичных цепей источника питания

сборку диодов Шоттки, работа которых наиболее эффективна при относительно небольпшх обратных напряжениях. В данном случае к диодам сборки выпрямителей канала +12 В прикладывается обратное импульсное напряжение, амплитудное значение которого почти в два раза меньше, чем в аналогичной цепи, показанной на рис. 2.2.

Крайние выводы нижней обмотки подключены к катодам выпрямительных диодов D1, D2. На анодах этих диодов появляются -импульсы напряжения отрицательной полярности, после фильтрации которого получается общее постоянное напряжение для формирования номиналов -5 и -12 В. В этом источнике питания дроссель L2 содержит только три канальные обмотки. Напряжение питания +3,3 В формируется отдельным выпрямителем надиодной сборке SBD3 и стабилизатором, выполненном на транзисторе Q1, и не входит в контур стабилизации с помоп1,ью магнитной связи. Выпрямительные диоды каналов +5 и +3,3 В подключены к одноименным выводам обмоток трансформатора Т. Мгновенное увеличение токовой нагрузки по каждому из данных каналов приводит к снижению амплитуды импульсов на выводах этих обмоток. Поэтому косвенное слежение за уровнем напряжения в цепи питания +3,3 В производится по падению напряжения в цепи канала +5 В. Слежение за уровнем выходных напряжений в данной схеме осуществляется также по состоянию каналов +5В и +12 В, но поскольку в этом примере рассматриваются

схемы фильтрации и дополнительной стабилизации вторичных напряжений, цени, используемые для основной стабилизации, на рис. 2.17 не показаны. Для дополнительной стабилизации напряжений отрицательных номиналов установлены интегральные стабилизаторы IC1 и IC2. В качестве стабилизатора канала -5 В использована микросхема типа 7905, а для формирования напряжения -12 В - микросхема типа 7912. В каналах отрицательных напряжений несколько изменена схема сглаживания импульсного напряжения, фильтрация которого выполняется только обмоткой дросселя L2.

В данном варианте построения регулятора напряжения +3,3 В следует отметить две характерные особенности. Выходное напряжение канала корректируется потенциометром R11, а не жестко задается резистивным делителем с заранее определенными номиналами. К коллектору регулирующего транзистора Q1 на схеме рис. 2.17 не подключен накопительный конденсатор. В этом варианте замыкание выходных клемм канала +3,3 В на балансный источник напряжения через транзистор Q1 происходит в течение действия отрицательных импульсов на катоде диода D3. В остальные промежутки времени коллектор Q1 подключен к общему проводу питания через диод D4. Принцип ре17лировки уровня напряжения этого канала полностью аналогичен способу, ранее описанному при рассмотрении схемы, представленной на рис. 2.2.



На схеме рис. 2.17 также показан способ подюпо-чения вентилятора FAN, установленного внутри корпуса источника питания. Вентилятор, прежде всего, служит для охлаждения мощных элементов самого источника питания. Воздушный поток движется из внутренней полости источника наружу. Оба силовых транзистора источника питания установлены на одном радиаторе через изолирующие прокладки. На втором радиаторе закреплены выпрямительные диодные сборки сильноточных каналов. Оба радиатора расположены напротив вентилятора и при его работе охлаждаются воздушным потоком.

Каскад на транзисторах Q2 и Q3 предназначен для регулировки уровня напряжения и соответственно для частоты вращения ротора вентилятора. Все источники питания АТХ конструктива имеют аналогичные регуляторы скорости вращения вентилятора. Питание каскада производится от вторичного напряжения +12 В. Начало вращения вентилятора после подключения источника к питающей сети может служить своеобразным индикатором формирования вторичных напряжений. Сам вентилятор включен в эмиттерную цепь транзистора Q3. Уровень напряжения на вентиляторе и соответственно скорость его вращения зависят от внутренней температуры источника. Датчиком температуры является терморезистор ТН1 с отрицательным коэффициентом сопротивления, подключенный между базой транзистора Q2 и общим проводом питания. По мере прогревания внутренней полости прибора значение сопротивления резистора ТН1 уменьшается. Уровень напряжения базового смещения у транзистора Q2 снижается. Развитие этого процесса приводит к постепенному закрыванию транзистора Q2 и повышению напряжения на базе Q3. При полностью закрытом транзисторе Q2 напряжение на базе Q3 достигает своего максимального уровня, и транзистор Q3 полностью открывается. Величина сопротивления перехода коллегсгор-эмиттер транзистора Q3 падает до минимально возможной. Скорость вращения вентилятора в этих условиях самая высокая.

2А5, Цепи защиты и цепи формирования служебных сигналов

Силовые элементы (как активные, так и пассивные) для каждого источника питания выбираются с учетом предельных рабочих режимов, которые должен обеспечивать источник. Увеличение нагрузки сверх расчетной приводит к повреждению компонентов силовой части. Если меры защиты от

ненормированного увеличения потребления тока нагрузкой не предусмотрены, выпрямительные и индуктивные элементы вторичных цепей также могут быть безнадежно испорчены. В этом случае блок полностью придет в негодность и для его восстановления потребуются большие трудовые и материальные затраты. Для исключения повреждения цепей источника питания в его схему вводятся дополнительные элементы, которые обеспечивают защиту при возникновении в нагрузке процессов, не предусмотренных условиями нормального функционирования всего источника питания.

Основная цель применения этих элементов -воздействовать н цепи управления формирователя импульсных сигналов для ограничения подачи энергии во вторичные каналы напряжения до устранения причины, вызвавшей возникновение неконтролируемого процесса. Система защиты источника, показанная на схеме рис. 2.2, срабатывает в следующих случаях:

короткого замыкания по вторичным каналам отрицательных напряжений;

превышения уровня напряжений каналов +5 В и +3,3 В выше предела, установленного техническими характеристиками;

чрезмерного увеличения длительностей импульсов управления силовыми транзисторами.

Процесс включения защиты имеет комплексный характер и в некоторых случаях сигналы, приводящие его в действие, поступают на исполнительную цепь по нескольким каналам. Для запуска защитного механизма во всех перечисленных выше случаях предусмотрены свои отдельные каскады. Каждый из них формирует индивидуальный сигнал защиты. Все эти сигналы объединяются элементом монтажного ИЛИ, реализованным на дискретных компонентах. Выход элемента ИЛИ подключен к микросхеме ШИМ регулятора IC1, работа которой блокируется в случае фиксации неисправности хотя бы в одном из каналов защиты. Действие, которое оказывает каждый канал защиты на работу источника питания, приводит к его длительной блокировке. Возобновление нормальной работы может произойти только после отключения преобразователя от первичной сети и при повторном включении.

Рассмотрим, во-первых, режим работы источника питания с точки зрения функционирования элементов защиты, во-вторых, все каскады, которые инициируют запуск механизма включения блокировки источника питания, и, Ё-третьих, условия, при которых они начинают действовать.

При подтслючении преобразователя напряжения к первичной питающей сети безусловным является



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38