Меню
Главная
Прикосновение космоса
Человек в космосе
Познаем вселенную
Космонавт
Из авиации в ракеты
Луноход
Первые полеты в космос
Баллистические ракеты
Тепло в космосе
Аэродром
Полёт человека
Ракеты
Кандидаты наса
Космическое будущее
Разработка двигателей
Сатурн-аполлон
Год вне земли
Старт
Подготовки космонавтов
Первые полеты в космос
Психология
Оборудование
Модель ракеты
|
Космонавтика Автогенераторные каскады преобразователей только запуск автогенераторного каскада. На другие первичные цепи сначала подается только выпрямленное сетевое напряжение. От вторичной цепи автогенераторного каскада положительное напряжение питания IC1 поступает на вывод IC1/12. На выходе IC1/14 формируется постоянное стабилизированное напряжение с номинальным значением +5 В. Этот вывод в схеме (см. рис. 2.2) соединен с выводами ICl/13,15 микросхемы TL494 и эмиттерами транзисторов Q1 и Q5. Коллектор транзистора Q5 непосредственно, а коллектор транзистора Q1 через диод D10 подключены по схеме монтажного ИЛИ к выводу 1С 1/4 микросхемы ШИМ регулятора. К выводу 1С 1/4 подсоединен неинвертирующий вход внутреннего компаратора DA1 (по рис. 2.7). Выходной сигнал DA1 зависит от соотношения подаваемых на его входы напряжений. На инвертирующий вход DA1 поступает пилообразное напряжение. Пока на микросхе-L MylCl подается постоянное положительное напря-кние с уровнем не ниже +7 В, его формирование ИЬисходит непрерывно. Амплитуда пилообразно-Н[ сигнала ~3 В. Если на неинвертирующий вход П)к\ поступит положительное напряжение по уровню, превышающее амплитуду пилы , то на его выходе установится постоянное высокое напряжение, которое передается на вход элемента DDI. Элемент DDI блокируется этим уровнем, а значит на его выходе будет поддерживается постоянный высокий уровень независимо от состояния второго его входа. Следовательно, импульсный сигнал отключится от триггера DD2 и на базах транзисторов VT1 и VT2 будет напряжение низкого логического уровня. Формирование ШИМ выходного сигнала будет приостановлено. Транзисторы промежуточ- iHoro усилителя Q8 и Q7 замрут в открытом состоянии. Передача импульсного сигнала в базовые цепи Q9 и Q10 прекратится. Остановится процесс ВЧ преобразования и подача энергии во вторичные цепи. В такой последовательности будет развиваться процесс остановки работы всего источника питания, если хотя бы один из транзисторов Q1 или Q5 будет находиться в открытом состоянии. Через любой из этих открытых транзисторов на вывод IC1/4 будет подаваться напряжение высокого логического уровня, превышающее амплитудное значение пилообразного напряжения на IC1/5 (и соответственно на инвертирующем входе компаратора DA1). Выход канала дежурного питания +5VSB через резистор R22 подключается к базовой цепи транзистора Q2. В этой цепи возникает положительный потенциал практически сразу после включения питания. Транзистор Q2 переходит в состояние насыщения и резистор R16 через него подключается к общему проводу вторичного питания. При этом происходит открывание транзистора Q5, через малое сопротивление которого вывод 1С 1/4 подключается к источнику питания +5 В - вывод IC1/14. Микросхема IC1 устанавливается в режиме ожидания и удерживается в нем до поступления на вход PS-ON (базовая цепь Q2) низкого логического ур вня. Запуск микросхемы IC1 происходит при подаче сигнала низкого логического уровня в точку PS-ON и последовательного закрывания транзисторов Q1 и Q5. Вывод 1С 1/4 отключается от источника положительного напряжения, снимается блокировка элемента DDI и на выходах 1С1/8,11 начинают формироваться импульсы управления. В процессе работы или в начальный момент подключения источника питания к нагрузке в любой вторичной цепи может произойти короткое замыкание (КЗ). Оно приводит к резкому неконтролируемому увеличению тока. Допустим, что КЗ возникло в произвольном канале положительного вторичного напряжения. В начальный момент увеличения нагрузки импульсный преобразователь будет стараться компенсировать снижение уровня выходного напряжения. По цепи обратной связи микросхема IC1 получает сигнал о снижении уровня вторичного напряжения. После сравнения поступившего уровня сигнала с опорным уровнем на выходе усилителя рассогласования возрастет напряжение ошибки. Длительность импульсов управления с выхода ШИМ формирователя начнет быстро увеличиваться. Соответственно станут больше и интервалы времени, в течение которых силовые транзисторы находятся в открытом состоянии. Ток, протекающий через них, также повысится из-за снижения эквивалентного сопротивления импульсного трансформатора, пересчитанного к первичной обмотке. При увеличении длительности импульсов сокращаются паузы между ними. Напряжение в тоцке соединения анода диода D18 и катода диода D19 интегрируется керамическим конденсатором С19. Уровень напряжения на конденсаторе С19 также начинает повышаться. С увеличением уровня этого напряжения растет положительный потенциал на базе транзистора Q6, величина которого определяется соотношением резисторов делителя, состоящего из сопротивлений R20 и R21. Сопротивление перехода коллектор-эмиттер транзистора Q6 вгспючено последовательно с резисторами R13 и R14. Эти три сопротивления образуют базовый делитель транзистора Q1. С повышением напряжения на базе Q6 сопротивление его перехода коллектор-эмиттер уменьшается. Когда оно примет значение, равное ~1 кОм, произойдет открывание транзистора Q1. Таким образом, как только возникает короткое замыкание по одному из основных каналов потребления энергии, последовательно открываются транзисторы Q6 и Q1. Через открывающийся транзистор Q1 положительное напряжение, образованное внутренним источником микросхемы TL494, с вывода 1С1/ 14 подается на вывод 1С 1/4. Напряжение на выводе 1С 1/4 также постепенно нарастает. Изменение структуры сигналов управления при этом можно проследить по диаграммам работы ШИМ регулятора (см. рис. 2.8). В описываемом случае на диаграмме 2 происходило бы постепенное увеличение длительности положительного импульса вследствие превышения уровня напряжения, отмеченного горизонтальной линией. Ширина же положительных импульсов на диаграмме 4 (выход компаратора DA2) имела бы минимальную ширину. Обе последовательности поступают на входы элемента DDI. Параметры результирующей выходной импульсной последовательности определяют длительность открытого состояния силовых транзисторов. Временной интервал, в течение которого силовой транзистор открыт, равен паузе между импульсами последовательности с меньшей длительностью паузы. С возрастанием напряжения на входе IC1/4 происходит уменьшение паузы в последовательности на выходе элемента DDI и, как следствие, сокращение времени активного состояния силовых транзисторов. Микросхема IC1 постепенно переводит силовые транзисторы Q9 и Q10 в режим работы с ограниченной длительностью активного состояния. Сначала передаваемая во вторичную цепь снижается до минимума, что приводит к резкому снижению уровней выходных напряжений по всем каналам, а затем происходит полная блокировка импульсов на выходах 1С 1 и остановка преобразователя. После того как транзистор Q1 откроется через диод D3, в базовую цепь транзистора Q4 поступит положительное напряжение, переводящее его в состояние насыщения. Теперь в базовой цепи транзистора Q1 два транзистора Q4 и Q6 находятся в открытом состоянии. Уменьшение длительности импульсов, открывающих транзисторы Q9 и Q10, а также остановка преобразователя приведут к понижению напряжения на конденсаторе С19. Транзистор Q6 закроется, но напряжение на выводе 1С 1/4 будет поддерживаться высоким, так как транзистор Q1 будет удерживаться в открытом состоянии, благодаря открывшемуся транзистору Q4. Таким образом, последовательное срабатывание транзисторов Q6 и Q1 приводит к блокировке выходов IC1. Использование же Q4 в базовой цепи транзистора Q1 позволяет сохранить это состояние. Силовая часть схемы и элементы управления в этом режиме блокируются полностью. Даже если причина КЗ будет устранена, источник питания самостоятельно не запустится. Повторный запуск потребует выключения питания и выдерживания определенной паузы для разряда конденсатора С8, подключенного между базой транзистора Q1 и общим проводом. В режиме ожидания питание микросхемы IC1 вновь возобновляется от автогенератора на транзисторе Q3. В микросхеме IC1 продолжают работать только генератор пилообразного напряжения и внутренний источник опорного напряжения, формирующий на выводе 1С 1/14 напряжение +5 В. Каскад для защиты схемы от К1э в цепях каналов с отрицательными выходными напряжениями собран на элементах D1, R2, R8, R9, D4 и Q4. Эти элементы образуют сумматор напряжений по каналам -5, -12, +5 В. Номиналы резистивных элементов подобраны так, чтобы в случае возникновения КЗ по одному из отрицательных номиналов, положительное напряжение на аноде диода D4 тгревыси-ло бы уровень 1,2-1,3 В. Этого будет достаточно для открывания транзистора Q4. Следом за этим транзистором в состояние насыщения переходит и транзистор Q1. Через открытый транзистор Q1 и диод D3 положительный потенциал подается, как и в выше описанном случае, в базовую цепь транзистора Q4. С коллектора транзистора Q4 через диод D10 положительное напряжение поступает на вход IC1/4. Выходы этой микросхемы и работа силового каскада блокируются. После снижения уровня выходного напряжения канала +5 В оба транзистора Q1 и Q4 в цепи защиты находятся в открытом состоянии. Маломощные стабилитроны ZD1 и ZD3 подключены катодами к выходам каналов напряжений +5 В и +3,3 В соответственно. Их аноды объединены и через резистор R3 подсоединены к общему проводу питания. Такое соединение кроме суммирования сигналов датчиков обеспечивает развязку между каналами. Через диод D5 аноды стабилитронов подсоединены также к базе транзистора Q4. Эти элементы являются датчиками уровней вторичных каналов положительных напряжений и используются для включения защитного механизма в случае превышения напряжениями этих цепей верхнего допустимого предела, установленного техническими характеристиками источника питания. Номинальный уровень фиксации неконтролируемого превышения напряжения в канале +5 В составляет +6,3 В, а для канала +3,3 В равен +4,2 В. Работа обеих защитных цепей строится по одному и тому же принципу. Он заключается в том, что при достижении выходным напряжением уровня защитной фиксации, напряжение в точке соединения анодов стабилитронов должно иметь значение 1,2-1,3 В, то есть достаточное для последовательного открывания диода D5 и транзистора Q4. Далее открывается Q4 и процесс включения защиты происходит по выше описанному алгоритму. Переключения элементов приводят к полной блокировке системы ШИМ регулирования. Для срабатывания схемы защиты при указанных предельных значениях напряжений использованы стабилитроны с напряжением стабилизации 5 и 3 В для каналов с выходным напряжени-к-ем соответственно +5 и +3,3 В. Каждый источник питания для персонального компьютера должен устанавливать сигнал оповещения вычислительной системы о завершении переходного процесса и достижения выходными вторичными напряжениями номинальных значений. Наименование этого сигнала в оригинальной транскрипции - POWERGOOD. В активном состоянии он имеет высокий логический уровень, который I появляется на выходе каскада-формирователя с за- держкой от 100 до 500 мс относительно вторичных напряжений. В схеме, приведенной на рис. 2.2, этот I каскад построен на микросхеме IC2, состоящей из двух компараторов напряжения. Структурная схема микросхемы IC2 представлена на рис. 2.18. Вывод питания IC2/8 подключен к источнигсу стабильного напряжения, сформированному на вы-воде IC1/14 микросхемы TL494. Опорное напряже-ie2,5 В со средней точки делителя, образованного юторами R23 и R24, поступает на входы IC2/2 фтирующий вход DA1) и IC2/5 (неинвертиру-1Й вход DA2). Компараторы микросхемы IC2 шчены последовательно. Выход компаратора IC2/7 подгслючен к неинвертирующему входу l1 IC2/3 через интегрирующую цепочку, образо-Ьную элементами R35 и С23. Компаратор DA2 1кросхемы IC2 отслеживает уровень сигнала PS-(Поступающий на его вход IC2/6 через резистор [З. Пока сигнал PS-ON будет иметь высокий уровень, поданный от IC3 через резистор R22, напряжение на выходе IC2/7 будет низкого логического уровня. Этот уровень через буферный элемент на компараторе DA1 транслируется на его выход -IC2/1. При переключении сигнала PS-ON в состояние низкого логического уровня, выход компаратора DA2IC2/7 изменит свое состояние, на нем появится уровень, близкий к +5 В, что соответствует высокому логическому уровню. Выходным током 8;-( 7 )-( 6 )-{ 5 Un Общий 1 )-( 2 }-( 3 Ь-(Т Рис. 2.18. Структурная схема микросхемы LM393 компаратора начинается заряд конденсатора С23. Когда напряжение на нем повысится до уровня, превышающего +2,5 В, напряжение на выходе компаратора DA1 IC2/1 также достигнет высокого логического уровня. Таким образом, для выработки сигнала POWRGOOD должно выполниться несколько условий: 1. До.Лкен включиться автогенератор на Q3, должны исправно работать его вторичные цепи и формирователь стабильного напряжения в1С1. 2. На вход сигнала PS-ON должен быть подан низкий уровень. 3. Вторичное напряжение +5 В должно успеть нарасти до номинального уровня. Таким образом, мы обсудили основные схемы источника питания (см. рис. 2.2) и принципы построения источника питания АТХ форм-фактора. Но прежде, чем перейти к рассмотрению возможных неисправностей этого источника питания, следует уделить внимание методам проведения работ по их выявлению и устранению. Практическое применение положений следующего раздела позволит производить ремонтные работы с максимальной безопасностью и эффективностью. 2.5. Проведение работ с блоками питания конаруктива АТХ Структурное построение бестрансформаторных источников питания имеет ряд особенностей, отличающих их от преобразователей первичной энергии сети переменного тока, содержащих низкочастотный трансформатор на входе. DiaBHoe отличие заключается в том, что силовая часть бестрансформаторного преобразователя не имеет гальванической развязки с первичной питающей сетью. Питание силовых каскадов осуществляется выпрямленным напряжением сети. Некоторые каскады, такие, например, как автогенераторные схемы, рассчитаны на работу именно при питании сетевым напряжением 220 В и не функционируют при пониженном. Максимальное напряжение на силовых элементах схемы превышает действующее значение напряжения первичной сети практически в полтора раза. Пренебрежение мерами безопасности при работе с такими высокими напряжениями может привести к поражению электротоком. Неправильное подключение к- источнику питания стационарных измерительных приборов при работе с ним может вызвать дальнейшее его повреждение. Избежать 8-504
|