Космонавтика  Автогенераторные каскады преобразователей 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38

встречную направленность. То есть намагничивание сердечника, которое происходит во время прохождения тока через W1, компенсируется магнитным потоком, возникающим под действием тока, протекающего через W2. Спадающий по мощности магнитный поток компенсации действует в промежутке между двумя импульсами открывания VT1.

Во время рабочего открывания транзистора VT1 для формирования импульса положительной полярности, воздействующего на базу силового транзистора, подключаемого к вторичной обмотке W3, ток протекает через обмотку W1 трансформатора Т2. По мере закрывания транзистора VT1 импульс положительной полярности на обмотке W3 трансформатора Т2 прекращается. Время активной работы силового транзистора, подключенного к обмотке W3, заканчивается, и он закрывается. Трансформаторы Т1 и Т2 не оказывают влияния на работу друг друга. Импульсы, действующие на вторичной обмотке W3, имеют вид двухуровневого сигнала в отличие от схем с использованием единого трансформатора для управления силовыми транзисторами, рассмотренными выще. Каждый силовой транзистор открывается синхронно с транзистором, установленным в его канале управления.

Все описанные выще процессы в микросхеме IC1 и промежуточном усилителе протекают в уста-новивщемся режиме, когда напряжения питания каскада управления имеют номинальное значение. Однако в начальный момент запуска ШИМ преобразователя каскад управления выводится в рабочий режим с помощью специальной схемы, обычно называемой схемой медленного (или плавного ) запуска. Необходимость применения особых мер по медленному запуску схемы управления обусловлено рядом причин.

Наиболее существенный момент в этом смысле состоит в том, что в момент подключения источника питания к сети все его емкости находятся в разряженном состоянии. Начальный бросок тока по цепи первичного питания, возникающий при заряде конденсаторов сетевого фильтра, нейтрализуется терморезистором. Конденсаторы во вторичной цепи источника также разряжены и в начальный момент представляют собой КЗ, то есть большую нагрузку. Силовые транзисторы после включения питания работают в форсированном режиме до тех пор, пока не произойдет заряд конденсаторов. По мере заряда токовая нагрузка на транзисторы снижается. Схема медленного запуска предназначена для постепенного выведения силового каскада в штатный режим работы. Период включения искусственно затягивается для обеспечения безопасного функционирования силовых элементов импульсного преобразователя. В процессе

медленного запуска на начальном этапе работы преобразователя напряжения происходит принудительное ограничение длительности импульсов управления, воздействующих на силовые транзисторы.

Рассматривая схему, приведенную на рис. 3.2, отметим, что после подключения источника к первичному питанию происходит формирование напряжения питания всего каскада ШИМ преобразователя, включая промежуточный усилитель на транзисторах Q3 и Q4. Напряжение питания подается по цепи, подключенной к выводу 1С 1/12 микросхемы TL494. Появление напряжения в этой точке инициирует работу внутренних каскадов микросхемы IC1. Запускается генератор пилообразного напряжения, внутренним стабилизатором на выводе 1С 1/14 формируется опорное напряжение питания +5 В. Между выводами IC1/12 и IC1/14 включен конденсатор Сб. В начальный момент после включения схемы конденсатор не заряжен и представляет собой малое сопротивление. При появлении напряжения на 1С 1/14 обе обкладки конденсатора Сб оказываются под одинаковым положительным потенциалом. Дальнейшее развитие процесса включения микросхемы удобно проследить с помощью диаграмм напряжения, приведенных на рис. 3.9. Диаграммы показывают состояние внутренних элементов микросхемы IC1.

На диаграмме 1 приведена форма напряжений, действующих на входах внутреннего компаратора DA2 микросхемы IC1, функциональная схема которой изображена на рис. 2.7. Пилообразное напряжение действует на его инвертирующем входе.


Рис. 3.9. Диаграммы напряжений, иллюстрирующие процесс медленного запуска



Линейно возрастающее напряжение подается на неинвертирующий вход компаратора от внутреннего усилителя ошибки на DA3. Сначала напряжения всех вторичных цепей равны нулю.. Поэтому на входе 1С 1/1 установлено также нулевое напряжение. После появления питания на IC1 резисторным делителем из R9 и R10 на вход 1С 1/2 подается положительный потенциал. Соотношение потенциалов на входах 1С 1/1 и 1С 1/2 таково, что напряжение на выходе внутреннего компаратора DA3 равно нулю. По мере передачи энергии во вторичную цепь происходит постепенный заряд конденсаторов в выходной цепи канала +5 В. Повышение уровня напряжения на выходе D A3 является следствием нарастания положительного потенциала на входе 1С 1/1. Внутренним компаратором DA2 производится сравнение входных напряжений. Результирующий выходной импульсный сигнал представлен на диаграмме 2. Рост линейного напряжения на его неинвертирующем входе сопровождается увеличением длительности положительных импульсов на выходе компаратора, с которого они поступают на первый вход внзтреннего логического элемента DDI.

Появление положительного потенциала на выводе 1С 1/4 и его постепенный спад показаны на диаграмме 3. Вход 1С 1/4 является неинвертирующим входом внзггреннего компаратора мертвой зоны DA1. На его инвертирующий вход подается пилообразное напряжение. Форма результирующего сигнала, появляющегося на выходе DA1, отражена на диаграмме 4. Этот сигнал подается на второй вход логического элемента типа ИЛИ. Если в это время хотя бы один из входных сигналов также будет иметь высокий потенциал, напряжение на его выходе примет высокий логический уровень. Фор-ма сигнала на выходе логического элемента DDI показана на диаграмме 5. Видно, что от появления питающего напряжения питания на 1С 1 до момента Т длительность положительных импульсов на выходе DDI определяется работой ШИМ компаратора DA2. Начиная с момента Т, после значительного спада напряжения на входе IC1/4 на выход DDI поступают положительные импульсы, формируемые компаратором мертвой зоны DA1. При этом все временные параметры импульсной последовательности, действующей на входе цифрового тракта микросхемы IC1, задаются рабочими характеристиками внутреннего усилителя ошибки DA3 и внутреннего компаратора DA2. Диаграммы 6 и 7 демонстрируют форму импульсов на входах внутреннего триггера DD2. Последние две диаграммы показывают вид импульсных последовательностей, действующих на коллекторах транзисторов Q3 и Q4 промежуточного усилителя. Длительность положительных

импульсов управления увеличивается постепенно, что видно из диаграмм 8 и 9. Происходит плавное наращивание мощности сигнала управления и плавное нарастание напряжений вторичных цепей. Передача управления от компаратора мертвой зоны DA1 тракту усилителя ошибки осуществляется тогда, когда конденсаторы вторичных цепей уже заряжены и требуется передача энергии для поддержания уровня этого заряда.

3.4.2. Импульсный усилитель мощности

Источник питания, принципиальная схема которого изображена на рис. 3.2, относится к классу преобразователей напряжения с внешним возбуждением. Генерация сигналов управления работой импульсного усилителя мощности выполняется узлом ШИМ преобразователя. Сигналы управления имеют малый уровень и мощность. Усиление этих сигналов по току и напряжению производится силовым каскадом, построенным на транзисторах Q5 и Q6. Импульсный усилитель мощности выполнен по полумостовой схеме. Нагрузкой силового каскада является импульсный трансформатор Т4, включенный в диагональ моста. Для защиты силового трансформатора от насыщения постоянной составляющей протекающего тока его включение произведено последовательно с керамическим конденсатором С15.

Схема усилительного каскада в данном случае выполняет не только высокочастотное преобразование энергии источника постоянного напряжения, но она наделена еще и дополнительными функциями. Пбследовательно с первичной обмоткой силового трансформатора включена обмотка другого трансформатора - ТЗ. Она подключена в разрыв соединения первичной обмотки Т4 и точки соединения электролитических конденсаторов СЮ и СИ. Трансформатор входит в состав узла контроля перегрузки по току основных вторичных каналов блока питания. Первичная обмотка W3 трансформатора ТЗ используется в качестве основного элемента датчика токовой нагрузки вторичных каналов. На основе элементов силового каскада построен узел начального запуска каскада ШИМ преобразователя или, точнее, подачи начального питания на этот каскад. Если на микросхеме TL494, являющейся базовым элементом схемы управления, не установлена блокировка, она запускается -автоматически при нарастании напряжения питания на ее выводе IC1/12 до уровня +7 В. Под запуском понимается начало формирования импульсных последовательностей на выводах 1С 1/8, И.



Напряжпние питания на вывод 1С 1/12 микросхемы поступает через последовательно соединенные диод D18 и резистор R31. Анод диода соединен с выходом выпрямителя на диодной сборке SBD2. Фильтрация напряжения питания микросхемы выполняется конденсаторами С17 и CIS. Эта цепь питания единственная. Только по этой цепи напряжение питания подается на микросхему IC1 и каскад промежуточного усилителя с момента запуска преобразователя и в течение всего цикла работы. Для формирования начального импульса напряжения на вторичной обмотке силового трансформатора специально модифицированы базовые цепи силовых транзисторов. В классической схеме полумостового усилителя в базовые цепи транзисторов включено по одной вторичной обмотке согласующего трансформатора. Сигналы для открывания транзисторов поступают через эти обмотки. На рис. 3.2 показано, что вторичная обмотка трансформатора Т2, подключенная к цепям транзистора Q5, состоит из двух полуобмоток - W3 и W4. К элементам, составляющим базовую цепь транзистора Q6, подсоединена обмотка W5. Обмотки W3 и W4 намотаны синфазной противоположно намотке W5. Еще одним отличием схемы, приведенной на рис. 3.2, от классического варианта является наличие резисторов R7 и R9, установленных между коллекторами и базами транзисторов Q5 и Q6 соответственно. Резисторы служат для подачи смещения на базы силовых транзисторов и являются необходимыми элементами в цепи формирования напряжения начального запуска ШИМ преобразователя.

В начальный момент времени после подачи электропитания на блок питания напряжение поступает только на элементы силового каскада. На всех вторичных обмотках трансформатора Т4 напряжение отсутствует. Конденсаторы С10 и СИ образуют емкостной делитель. Напряжение в точке их соединения равно половине напряжения питания силового каскада. Благодаря наличию резисторов R27 и R29, на базах транзисторов Q5 и Q6 постепенно нарастают напряжения начальных смещений. Оба транзистора начинают открываться, это вызывает протекание увеличивающихся токов через вторичную обмотку W4 согласующего трансформатора Т2. Токи имеют встречную направленность. Причиной появления первого из токов является открывание Q5, этот ток протекает по цепи: положительная обкладка конденсатора СЮ -коллектор-эмиттер Q5 - обмотка W4 трансформатора Т2 - конденсатор С15 - первичная обмотка Т4 - первичная обмотка ТЗ - отрицательная обкладка конденсатора СИ. В контур протекания тока, вызванного открыванием транзистора Q6, входят следующие элементы: положительная обкладка

конденсатора СИ - первичные обмотки трансформаторов ТЗ и Т4 - конденсатор С15 - обмотка трансформатора Т2 - коллектор-эмиттер Q6. В каждом контуре протекания токов присутствуют одно именные элементы. Но токи двигаются по нш в противоположных направлениях. Силовые транзисторы имеют технологические разбросы параметров, поэтому токи не могут полностью компенсировать друг друга. Один из них обязательно будет преобладающим. В общем случае таким током может быть любой из двух. Но для определенностг. описания предположим, что большую величин) имеет ток, протекающий через транзистор Q6, поэтому потенциал на нижнем по схеме выводе обмотки W4 трансформатора Т2 будет немного выше, чем на ее верхнем выводе. Преобладающий ток протекает от нижнего вывода к верхнему. Вторичные обмотки трансформатора Т2 имеют между собой магнитную связь. Током, протекающим через обмотку W4 трансформатора Т2, наводится ЭДС в обмотках W3 и W5. Обмотки W3 и W5 подключены в схему таким образом, что напряжения ЭДС, приложенные к элементам базовых цепей силовых транзисторов в них, будут иметь противоположные знаки. На выводе обмотки W5, подключенном к аноду диода D15, напряжение будет положительным. На аналогичном выводе диода D14 приложенная в это же время ЭДС будет отрицательной. ЭДС обмоток W4 и W5 с учетом знака напряжения будут складываться с потенциалами начального смещения транзисторов Q5 и Q6, образующихся благодаря резисторам R27 и R29. Отрицательное напряжение обмотки W3, складываясь с базовым потенциалом транзистора Q5, будет уменьшать положительное напряжение, что приведет к закрыванию этого транзистора. Возрастающее же положительное напряжение на обмотке W5 будет только увеличивать уровень начального смещения на базе Q6. Этот процесс развивается очень быстро и, в итоге, вызывает полное открывание транзистора Q6. В нашем случае происходит быстрое открывание Q6 и запирание Q5. При полном от1фывании транзистора Q6 ток, протекающий через первичную обмотку Т4, резко возрастает, создавая нарастающий магнитный поток в его сердечнике. На вторичных обмотках Т4 наводятся ЭДС, знаки которых определяются в соответствии с подключением обмоток. Все выпрямительные схемы вторичных цепей являются двух-полупериодиыми, поэтому на выходах каждой из них обязательно появятся импульсы напряжений. Полярность выходных напряжений определяется схемой подключения выпрямительных диодов к вторичным обмоткам трансформатора Т4. Вывод IC1/12 микросхемы ШИМ преобразователя через резистор R31 и диод D18 подключается к выходу



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38